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Abstract. Distributed denial of service (DDoS) attacks in the Internet
pose huge problems on nowadays communication infrastructure. Attacks
either destroy information or impede access to a service. Since the sig-
nificance of the Internet to business and economy is growing rapidly,
efficient protection mechanisms are urgently required to protect hosts
from being infected and, more important, sites from being attacked. De-
tection of DDoS attacks requires deep packet inspection at link speed,
and context-dependent packet handling for countermeasures. This func-
tionality is not achievable with nowadays commercial high-performance
routers.

In this paper, we therefore present our problem space exploration of
DDoS attacks and propose a flexible service architecture for detection
and filter mechanisms to counteract DDoS attacks. To achieve the perfor-
mance required for backbone routers together with the flexibility needed
for services counteracting DDoS attacks, we base the proposal on our
PromethOS NP router platform that manages and controls hierarchical
network nodes built of network and host processors.

1 Introduction and Motivation

Present day communication infrastructure has been seriously threatened by
large-scale distributed denial of service (DDoS) attacks in the Internet. These
attacks destroy information or hinder customers from accessing specific services.
Services provided in the Internet like on-line stock trading, virtual travel agen-
cies or book-stores are very important to economy already today. The Economist
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reported in May 2004 [31]: “The 200m Americans who now have web access are
likely to spend more than US$120 billion online this year.” But in eCommerce,
brief inaccessibility of services results in loss of business [31]. Since the impact
of eCommerce on economy is expected to grow further, the risk of economic
damage resulting from a large-scale Internet attack increases [11]. The situation
becomes more dramatic because the number of attacks increases at least at the
same pace as the impact of eCommerce does. Of further threatening importance
is the fact that newly discovered errors in soft- or hardware are exploited more
rapidly for fresh attacks [32].

The effect of large-scale DDoS attacks in the Internet correlates with the
number of infected hosts that launch attacks towards other sites. Hence the
threat emerges as more and more private and insufficiently managed hosts are
connected to the Internet by broadband lines. Home users are rarely aware of
the problems and dangers in the Internet nor are they able to manage and pro-
tect their hosts effectively. But eCommerce flourishes not at least thanks to the
widespread use of the Internet by home users [31]. Companies afford security and
system administration teams quite often, but they suffer from similar problems.

To effectively protect the Internet, hosts need to be protected from becoming
an attacker as well as from being attacked at any site. It is hard if not unfeasible
to install protection mechanisms at this level of granularity without blocking
daily business. Hence, detection and countermeasures are required that approach
this problem at the level of border routers or gateways to protect larger areas in
the Internet.

Fighting DDoS attacks requires in-depth packet inspection to identify mali-
cious streams in the flood of traffic. With today’s commercial high-performance
routers, however, payload analysis is not possible, usually. Or if it is, the func-
tionality is coded either in firmware or hard-wired in the box. Attack schemes
vary a lot over time. In addition, the period becomes shorter between the first
detection of an exploit and the widespread launch of the attack. So, it is cru-
cial that large-scale DDoS attacks are defeated on routers as close to the core
of the Internet as possible. Specific Anti-DDoS components must be installed,
configured and removed on request. For obvious reasons, the deployment of the
specific detection and countermeasure components must not interfere with other
services. Further, they must be able to tackle the problem of known as well as
unknown attacks semi-automatically according to predefined policies.

Active Networking (AN) [30] has proposed the concept of execution environ-
ments (EEs) to address the challenges of exchanging and extending service func-
tionality on the routers at run-time. So far, EEs have been instantiated only on
a single general purpose processor (GPP) as found in legacy personal computers.
But single GPP configurations are not able to cope with the demands of nowa-
days border or backbone traffic in the Internet. To increase the degree of pro-
grammability and simultaneously of flexibility at interface level, processor manu-
facturers have proposed the architecture of Network Processors (NPs) [14,15,22]
to be embedded in network interface cards (so-called NP-blades). Built of con-



trol and packet processors', they provide additional processing capabilities and
capacity in addition to the host processors. A hierarchical network node pro-
vides, thus, a perfect hardware platform for the envisioned Anti-DDoS service
since packet processors are able to process packets at line rate, and processors
on upper tiers provide the management and control functionality besides room
for further packet processing. However, it is extremely difficult to provide a
dynamically extensible router platform that provides the required abstractions
and is able to manage a hierarchical network node if component based services
must be able to span all tiers of the processor hierarchy. We propose PromethOS
NP [24,25] as the dynamically code-extensible router platform for the envisioned
Anti-DDoS service. It provides the abstractions required for node-internal com-
munication among service components by which services are allowed to span
arbitrary processors. Further, it provides the mechanisms to install, configure,
instantiate and remove service components on any code-extensible processor of
the processor hierarchy. Hence, the goal in this paper is to propose an architec-
ture of an Internet backbone Anti-DDoS service for our powerful PromethOS
NP router architecture.

Therefore, we structure the remainder of this paper as follows: in section 2, we
present a problem-space exploration of detection mechanisms and countermea-
sures against large-scale DDoS attacks in the Internet to extract commonalities
required for our service architecture. We briefly present the concepts and archi-
tecture of PromethOS NP in section 3. In section 4, we propose our Anti-DDoS
service architecture for PromethOS NP, and present related work in section 5.
Our paper is concluded by section 6, in which we give a summary and an outlook
to further work.

2 Large-scale Internet Attacks

The main type of large-scale Internet attacks we focus on here is an initial
worm-driven [29] compromise of a large number of hosts, followed by an op-
tional Distributed Denial-of-Service (DDoS) attack that uses the freshly com-
promised hosts as attack platform. We identify three main activities [32] during
this type of attack: target identification, target infection and DDoS attack. The
first two activities together are also called worm propagation. Worm propaga-
tion can sometimes also be done in a single step, e.g. when host probing and
compromise can be done with a single data packet.

The attack activity can be started by a trigger, for example a time, reception
of a message from an attack control network (see e.g. [33]) or completion of
a specific number of infection attempts. It can be done in parallel to worm

1 NP vendors do not use a consistent naming scheme to refer to the code-extensible
processors: the Intel IXP-architecture refers to the first-level processors as micro-
engines while the IBM PowerNP identifies them as picoprocessors or core language
processors. Second-level processors are named differently, as well. For this reason, we
refer to the first level of processing engines as packet processors and to those of the
second level as control processors.



propagation, however this usually impacts worm propagation speed negatively
and is generally not done.

We now describe the basics of the attack model in more detail and identify
common characteristics.

2.1 Activity 1: Target Identification

A vulnerable host offers network functionality that can be compromised. The
vulnerability can be located in an application, for example a P2P filesharing
client or web server, or in the operating system itself, e.g. in the network stack.
It is also possible to use several different vulnerabilities in worm propagation. In
order to recognize that a host is vulnerable, a vulnerable network functionality
has to be found on it. This is done by sending a specific probe over the network.
Probes consist of one or several specifically constructed packets that are sent to
a host. A probe can consist of several sub-probes.

2.2 Activity 2: Target Infection

After a vulnerable host has been identified, it still needs to be compromised.
This is done by using the vulnerability to transport to and start exploit code
on the target. This may involve a multi-stage process where several steps are
needed, each involving specific network activity. The end result is that the work
code runs on the target host and is able to propagate further from it. Note that
no complete host compromise is needed. Compromising a network application,
e.g. an email client, or part of an operating system may already be enough.
As an extreme case worms that use vulnerabilities in other worms (that have
previously infected the target) exist. The new host is now called infected.

A border case is single packet propagation, were target identification and
compromise are done with a single network packet, e.g. the Sapphire worm [5]
needs only a single UDP packet of 404 Bytes for a successful propagation step.
Single packet infection requires the use of a protocol that can transport data in
the first packet, like UDP. Many vulnerabilities also do not allow single packet
propagation, e.g. because several data transfers are needed. Code Red [3,9] is
an example of a worm that uses TCP with its three-way handshake [23]. As an
example of a multiple protocol infection, the Blaster worm [6], uses TFTP [28]
to retrieve code in a second step of the infection, after an initial exploit was used
to initiate the second step.

2.3 Activity 3: Attack

The third step is to execute one or several attacks. Sets of compromised hosts
have also been used for other purposes, e.g. as relay for unsolicited commer-
cial email (SPAM), which is of interest to organized crime. This worm creation
purpose has been predicted by Schechter and Smith in [26] and recently been
confirmed to exist in practice by the German computer magazine ¢’t [8]. In this



paper we only deal with the use of compromised hosts as attack platform for
DDoS attacks?.

2.4 Detection and Possible Countermeasures

We differentiate between the terms byte-pattern, flow-pattern and traffic-pattern.
A byte-pattern is a sequence of bytes within a packet. A flow-pattern is a sequence
of packets that together forms a specific attack. A traffic-pattern is an aggrega-
tion of multiple flow-patterns that target the same site. We do attack detection
by trying to observe traffic anomalies. We argue that traffic-pattern need to
be analyzed for this. For the identification of packets belonging to a specific
attack, attack signatures need to be determined. Attack signatures can be de-
tected either by byte-patterns or flow-patterns. Once this has been done for a
specific attack, a countermeasure can be selected and activated. We base our
detection and countermeasure service on four fundamental functional elements
named Capture, Identification, Filter and Slowdown.

Data Capturing: In order to detect a worm during its propagation phase in
a high-speed network, access to more than abstracted traffic data (e.g. Net-
Flow [7]) is desirable. One promising possibility is to obtain information about
specific suspicious traffic from abstract data without payload information and
then capture concrete packets to gain more insights. As an example, transferred
worm code looks the same in most observed worms. If, e.g., a lot of TFTP trans-
fers are observed, it would be desirable to find out whether most carry the same
payload. Furthermore, it is desirable to capture complete instances of the trans-
ferred code. The same is true for the exploits used and for the packets sent in
a DDoS attack. This information can then not only be used to better under-
stand the worm, but is also essential in generating specific filters or slowdown
mechanisms and in identification of infected hosts.

Identification of Compromised Hosts: One countermeasure desirable is the
filtering of all traffic from infected hosts. This serves to block further infections
as well as attacks or other misuse of compromised hosts. It also serves to force
host operators to repair the compromised host software. In order to allow host
filters, infected hosts have to be reliably identified. Generally, this needs payload
information. The reason is that worms and DDoS attacks frequently use proto-
cols that are also used for other purposes. Without payload based detection of
infected and attacking hosts, the number of wrongly identified and blocked hosts
could be large and this type of countermeasure can do more damage than good.

2 Since worm spreading and host infection might be the attack itself, we refer to the
combination of all three activities by the term attack if we do not state the different
activities explicitly.



Filters: Besides host blocking, it is desirable to filter attack traffic out based
on protocol and payload information. One reason is that the set of compromised
hosts may not always be identified fully, for example if some infected hosts
do not propagate the worm but wait silently after infection until they start to
participate in a DDoS attack. In a filter, it may, e.g., be desirable not to block
all HTTP traffic to a site under attack, but just a specific query or query type as
emitted by some known infected hosts. In order for this to work, byte-patterns
have to be identified and then a filter for these patterns has to be constructed
and installed on the fly.

Slowdown: A variant of a filter is a slowdown filter. Instead of dropping all
packets, it limits the bandwidth for packets or connections matching a signature.
The advantage is that legitimate use of the target over the network is still pos-
sible, but slower. This is especially useful when attack traffic cannot be reliably
identified. Filtering infection traffic to implement slowdown is hard. Fast worms
as have been observed in the recent past compromise most vulnerable hosts in a
matter of minutes. Still filtering infection traffic is worthwhile, since worms have
a tendency to stay active for months or longer and cause both network load
and new infections of the occasional newly installed and unpatched hosts. While
filters have a very high disruptive potential if used incorrectly or triggered by
an attacker as a type of indirect attack, slowdown is far more benign. Slowdown
filters may even be safe enough to be employed in an automatic fashion, at least
initially. Countermeasures will still require some human input at some time for
near future. However, they can buy humans time to think and to understand
what is happening.

3 PromethOS NP Router Platform

We propose the PromethOS NP [24,25] router platform to introduce, map and
accommodate services, such as our Anti-DDoS service, on a hierarchy extended
active network node. Services as built of service components may span all pro-
cessing elements if required. To pave the way for the Anti-DDoS service architec-
ture, we briefly present the component based service model used on PromethOS
NP and the architecture of PromethOS NP with emphasizing specific compo-
nents that are required to control and manage this platform.

3.1 Component Based Service Model

Fig. 1 visualizes the service model of PromethOS NP by a configuration that il-
lustrates the capabilities of the model. Services for PromethOS NP are described
as a graph of edges and vertices. Edges represent service components (empha-
sized with named boxes in Fig. 1) and vertices denote interconnection points.
Service components provide data path functionalities. Classical data path func-
tionality, for example, is payload dependent packet filtering, counting or even
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Fig. 1. Service Model

payload transcoding. Service components are configured and controlled by con-
trol components. A control component, as exemplified by F4 in Fig. 1, may
control one or more service components. In addition, the control component it-
self may provide data path service functionality. Functionalities provided by the
components depend on their implementation. While service components regis-
ter for data communication only, a control component may register for timed
events, too. At vertices, a service graph may be split into several subgraphs and
combined by fork and join operations, respectively. Service components register
with one data input and one data output port and bidirectional control com-
munication is provided between the service and the relevant control components
(symbolized by the connections between F4 and F2).

We refer to service components with the adjacent vertices by the term service
chain. A Service Control Bus (SCB) accompanies a service chain. It propagates
signals like packet discard notifications as well as the state of the service chain,
i.e. whether the service chain is currently processing a packet or whether it is
idle.

3.2 Architecture of PromethOS NP

Fig. 2 depicts the architecture of a PromethOS NP node using a three-tier pro-
cessor hierarchy® and a node control layer.

On all tiers, PromethOS NP provides dynamically code-extensible process-
ing environments (PEs). PromethOS NP creates a hierarchical EE by that an
interface to the hierarchical EE is provided only via the control layer. Internally,
PromethOS NP manages two different types of code-extensible PEs, in which
service components can be installed and instantiated. On the GPP cores, the
PE is implemented as an extended PromethOS EE [19] (cf. Host Processor Pro-
cessing Environment in Fig. 2). This PE provides a binary compatible interface
to the PromethOS EE. In contrast to the PromethOS EE, that runs on a single
processor node only, the other PE (cf. Network Processor Processing Environ-
ments in Fig. 2) is embedded in the hierarchical router platform and provides

3 The current implementation creates a three-tier hierarchical router platform for
nodes that are built of host processor and NP-blades. NP-blades consist of a con-
trol processor with a set of packet processors (Appl. Ref. Board [27] for the IBM
PowerNP 4GS3 [14]).
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the abstractions to build a service of distributed service components residing in
other PEs. On the PPs, a PE is instantiated that provides the mechanisms to
install and execute service components without stopping the PP.

The control layer contains components which are responsible for the whole
node. The Node Manager provides the interface to create a service at node run-
time and instructs the other components on the node to act according to its
decision. The Service Mapper creates the required map specification that pro-
vides the information to install and instantiate service components on specific
processors such that, first, a service can be created and, second, the resources
available are not overbooked. It instructs the PE specific Component Loaders to
load, instantiate, configure and unload service components. To better differen-
tiate between instantiated and uninstantiated service components, we refer to
the latter by the term module. Every module is identified by a module identifier
(ModID) that is unique for the whole hierarchical network node. The ModID



is used to query and re-configure the module at run-time. Service components
to be instantiated are retrieved by help of the Cache Controller. It is responsi-
ble to manage the node-local repository which contains service components for
PromethOS NP nodes. Upon reception of a request, it either compiles service
components from source or retrieves a service component in binary format if
available. It does not deal with network-wide service component retrieval but
assumes the availability of these components in the node-local repository?. The
Resource Information Database is required to keep track of resources available
and consumed. Therefore it interfaces with the Resource Controllers residing on
the different GPPs. Each PE is controlled by its Resource Controller. The Re-
source Controller configures and controls the Programmable Distributors (PDs)
according to instructions received from the Node Manager.

PDs implement the vertices of our service model on and between any pro-
cessors. Hence, they provide the mechanisms to bind a service chain to specific
flows. They are PE specific and provide the mechanisms required to forward
packets between service components. Two types of PDs are implemented. One
that interconnects service components on the same processor, and the second
one that interconnects service components residing on different processors.

In Fig. 3, we illustrate the architecture of a PD. PDs consist of a receiving,
classifying and forwarding element [24]. While the receiving and forwarding el-
ement eliminate the need of a service programmer to deal with the underlying
hardware platform, the classifier element is replaceable. It provides the inter-
faces like common service components but is required to communicate with the
receiving and forwarding elements along the SCB by a particular protocol.
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Fig. 3. Programmable Distributor

Packet classification is time-consuming. Therefore, we define cut-through
PDs to avoid unnecessary classification overhead if two adjacent components
are only linked directly. We extend the basic concept of service chains that con-
sists of a edge between two adjacent vertices to a set of edges for which no

4 For proof-of-concept purposes, we have implemented a straightforward service com-
ponent fetcher that is able to retrieve service components from a remote repository
over a secured TCP channel if the service components are not locally available.



classification and no inter-processor communication is required in between. On
a PromethOS NP node, service chains are identified by the first ModID that
starts the chain. A service chain is hooked to multiple outbound ports of a PD
as well as multiple different service chains are attached to a PD if required. Dy-
namic replacement of service chains is based on a selector logic per outbound
port. This logic provides the required semantic to install, replace and remove
service chains at node run-time without disrupting other services. PDs on PPs
are bound to the capabilities offered.

Our Proxy Device Driver provides the mechanisms to communicate between
all processors of the processor hierarchy®. This Proxy Device Driver supports
two types of communication channels between different processors. A fast path
provides the mechanisms to interconnect service components without additional
legacy classification overhead of the Linux Netfilter network stack architecture,
while a slow path along the Linux network stack provides the full flexibility of
iptables as described for PromethOS [19]. The Plugin Manager interfaces with
the Linux IP Stack, as well as with the fast path. Based on its ability, service
components may be executed on nodes with and without NP tiers. Moreover,
PDs are implemented as part of the Plugin Manager on GPPs regarding the
receiving and forwarding elements.

4 Anti-DDoS Service

Counteracting DDoS attacks requires continuous traffic observation and, if nec-
essary, the installation of countermeasures. Traffic observation and the insertion
of countermeasures, however, should not affect regular services. Therefore, we
propose a service architecture hereafter that provides the basis infrastructure
for the deployment of attack specific functionalities that mitigate the effect of
the attacks. The architecture has been designed such a way to make it possi-
ble to instantiate the four fundamental functional elements, namely Capture,
Identification, Filter and Slowdown (cf. Sec. 2), of our Anti-DDoS service.

4.1 The Service Architecture

Fig. 4 visualizes our Anti-DDoS service architecture in a particular configuration
that consists of a basis service infrastructure and an attack specific Service Han-
dler. While the Service Handler must make the required functionalities available
to detect and counteract DDoS attacks, the other components are generic in the
sense that they provide the fundamental service architecture. Since the path via
the Service Handler creates the needed countermeasure functionality, we refer to
this path as the service path. Irrespective of the functionality provided, for the
PromethOS NP router platform service components are black boxes. As such

5 Our Proxy Device Driver is based on the code delivered with the IBM Advanced
Software Offering Toolkit. It extends the original code base by a generalized, more
abstracted communication infrastructure with resource control mechanisms for a
hierarchical router architecture built of a multitude of NPs.
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not only the service path but also the service infrastructure are built of service
components that provide the appropriate functionalities. The service specifica-
tion is used by the Node Manager that triggers the installation and instantiation
of the service as mentioned above. The service logic, however, is service specific.
As such, the service logic may contain mechanisms to request the installation or
removal of service components depending on service-internal policies. Due to this
autonomous, policy based service-internal management, our service architecture
provides the basis of a node-local autonomous service.
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Fig. 4. Anti-DDoS Service Architecture

We argue that this autonomous service provides a suitable basis for detection
mechanisms and countermeasures against well-known and unknown attacks. We
exemplify three different, particular service configurations to illustrate the appli-
cability of our service architecture for the mechanisms and measures introduced
in Section 2:

— Without detection mechanisms or countermeasures installed, the Packet
Classifier assigns a tag to the incoming packets and sends the packet to the
first Dispatcher. Since no particular service path is specified by the tag, the
Dispatcher forwards the packet to the Counter. The Counter increments
tag-dependent counters and sends the packet to the next Dispatcher. This
Dispatcher then re-inserts the packet into the common routing/forwarding
path of the router.

— In case of a well-known attack, whose packets are classified according to
specified criteria, our Anti-DDoS service with the detection and counter-
measure mechanisms are implemented in the following way. An appropriate
policy is given to the Policy Handler that creates the service path and
configures the Packet Classifier implementing the Capture service func-
tion. Policies are specified beforehand and sent to the Policy Handler
by service-external entities. Packets matching the criteria are sent to
the respective service path (Identification). Service Handlers provide the
mechanisms required to detect packets that belong to an attack. Their
mechanisms give the specific operations necessary for in-depth payload
inspection or multi-protocol attack handling to detect, for example, the
W32/Blaster worm [6]. Service Handlers are installed on request to carry
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out the Filter or Slowdown service functionalities, as well. Multiple Service
Handlers may exist simultaneously. A Service Handler signals the detec-
tion of a particular pattern to the subsequent Dispatcher. Depending on
the service configuration, packets are sent to the Capturer or to the Dropper.

— In case of unknown attacks, our Anti-DDoS service follows a different con-
figuration. These attacks, i.e. traffic anomalies, are detected by that the
Rate Controller queries the counters periodically and compares the values
retrieved with specified thresholds. If the counters exceed these thresholds,
the Rate Controller informs the Policy Handler of the violating tag and
provides the violated condition. This message initiates a service extension
or re-configuration process by the Policy Handler. The Policy Handler trig-
gers the installation of a violation specific service path and configures the
Packet Classifier to dispatch packets that comply with the specific pattern
accordingly. Based on the possibility to extend services dynamically, spe-
cific detection mechanisms can be provided to detect and analyze unknown
traffic anomalies. The Rate Controller is implemented to control traffic in
an autonomous way. Statistical information can provide the means required
to detect abnormal traffic patterns. Policies bring the Policy Handler to,
for example, configure particular Droppers or Capturers as to implement
the Capture, Identification, Filter or Slowdown service mechanisms, respec-
tively.

Packets can be sent to the Service Handler by mistake if, for example, a
packet matches a particular byte-pattern at the first classifier but the in-depth
packet inspection carried out by the Service Handler reveals that the packet
is not part of an attack. Were such packets simply discarded, denial of service
results although not all flows are malicious. To avoid such malfunctioning, false
positives must be re-inserted.

Attacks vary and provide attack-specific characteristics. These characteristics
are yet unknown and may require specific countermeasures that are neither con-
figurable with today’s routers nor implementable within today’s firmware. Large
hierarchical routers located in or close to the core, however, need to be prepared
to effectively mitigate future attacks without interruption of other services as it
would be required if firmware would need to be upgraded.

4.2 Hardware Constraints

PDs enable service designers to focus on the specific functionality to be imple-
mented according to a unified component model among all types of processors.
Thus the challenge remains to decide where to place which service component.
For the exploration of this problem space, we need to take hardware constraints
into account before we can propose an appropriate classification scheme.
Today’s packet processors provide very limited but highly specialized pro-
cessing capabilities. The programming flexibility known from general purpose
processors is not available there. For example, the number of timer events is
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small. Since PPs are focused on squeezing out the most of possible performance
for packet processing, they are not well-suited for dynamic code updates. Mem-
ory is direct mapped; no address virtualization is available. This imposes hard
constraints on the code layout of service components for packet processors, and
makes the installation of code components at run-time extremely difficult. Fast
memory on the NPs is an extremely scarce resource. Different types of memory
exist therefore on an NP-blade. Packet processors differentiate between instruc-
tion memory and data memory. Often, the former provides room for a total of
32 kilo-instructions [14] only. Thus, the number of code components that can
be installed is very limited if we assume that additional functionality, like rout-
ing, must be provided by the NP besides our services. While PPs provide fast,
co-processor supported packet processing capabilities, control processors on the
NPs increase flexibility by general purpose processor architectures. In addition,
CPs are able to manage up to 2 GBytes of DRAM [16].

Packet processors are able to forward packets at line speed. But communica-
tion paths between service components on the PPs and those on the CPs are not
able to cope with the aggregated throughput of all PPs. Neither are today’s CPs
able to process so high packet rates fully themselves. For example, our proto-
type implementation with the IBM PowerNP 4GS3, we have been able to receive
packets at approx. 100 Mbit/s on the embedded PowerPC. while bi-directional
communication resulted in a maximal transmission rate of 42.7 Mbit/s [25]5. If
we assume a hierarchical network node with multiple NP-blades, router-internal
communication between NP-blades and the host processor is not able to cope
with the data rate either. Actual NPs, like the Intel IXP28xx family, are able to
forward packets lossless at rates of up to 20 Gbit/s [17] on the packet processors.
Thus, forwarding all packets to host processors would overcharge any of them,

Hence, we argue that scalability of our node is achieved by that pro-
grammable network interfaces will be equipped with NPs in the near future.
Thus they provide a fully programmable GPP together with a potentially large
set of optimized and specialized PPs. Currently, control processors do not provide
the processing capacity to run data path service components with the required
performance [25]. However, as processor technology advances, performance of
control processors will not be of a major concern. We can imagine that multi-
core CPs are feasible soon as separated memory channels for CPs and PPs are.
Separated channels are required such that the processing elements do not inter-
fere with each other” when processing packets each. But challenge remains in
deciding where to place service components most effectively.

4.3 Service Components on Our Hierarchy-extended Router

Communication between different processor tiers is time consuming, imposes
additional limits on packet throughput and comes at the cost of overhead that
needs to be avoided by design if possible. To explore this problem space, we

5 The chip itself is able to handle nearly four times 1 Gbit/s.
7 Some NP manufacturers provide this capability already today.
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propose a classification scheme that is based on the complexity of the operation,
the rate and the type of service functionality. This classification scheme is used
hereafter to support the mapping strategy of an Anti-DDoS service onto our
router platform.

Functionality

Node-wide
Mgmt & Ctrl.

Interface
Mgmt & Ctrl.

Datapath

Complexity

Fig. 5. Classification Dimensions

We differentiate between three dimensions as illustrated in Fig. 5. The first
dimension is the complexity of the function provided by the component. The
complexity depends on the type of procedures to be applied. For example, if
byte-patterns can be identified in a single packet only, the complexity of the
appropriate function is lower than if a series of packets needs to be kept in
memory before the function can return its decision. The second dimension is the
rate a service component must be able to receive packets or control messages.
And the third dimension is the type of service functionality provided, i.e. data
path, control or management functionality. For the PromethOS NP platform,
it is important to know if a service component is triggered by a timer event
or upon arrival of a packet at its data input port, and if a service component
manages and controls rather a full node than a NP-blade only. We name the
first dimension processing complezity, to the second we refer by the term rate,
and the third is referred to as functionality.

For the classification of the service components of our service architecture,
we decide on the complexity, rate and the functionality. The complexity of a
function provided by a component is determined at specification time while the
initial location of components in the second dimension is based on rough estima-
tions of expected packet rates for data path service components. The location of
control and management components in the second dimension depends on the
frequency of triggers or queries the component is expected to handle. Placement
of components in the third dimension is based on the type of service function-
ality a component is expected to provide. It is important to distinguish from
service components that provide functionality on data packets and from those
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that are able to control manage other service components. Hence, the function-
ality differentiates between service components residing solely in the data path
or providing functionality in the control and management plane as well.

|Component | Complexity ‘ Rate | Functionality ‘
Classifier Low High Data path

Counter Low High Data path

Capturer High Low Data path

Dispatcher Low High Data path

Dropper Low High Data path

Rate Controller Low Middle Interface Control

Service Handler|Low — High|Low — High| Data path/Interface Control
Policy Handler High Low Node-wide Management & Control

Table 1. Classification

In table 1, we present the classification of the service components of our ser-
vice architecture according to the scheme introduced above. We exemplify the
classification by explaining its application to the Packet Classifier, the Service
Handler and the Policy Handler. The Packet Classifier needs to process all arriv-
ing packets. Hence, the rate is high. However, the complexity is low since packets
can be classified based on data available in a single packet only. Remember that
this Classifier decides if a packet needs further in-depth analysis. In addition,
the functionality provided is one clear representative of the data path. Classifier
are therefore instantiated on PPs of all NP-blades most preferably. Function-
ality provided by the Service Handler is service specific. The operations to be
applied can range from rather simple byte-pattern matching of payload in po-
tentially fragmented IP packets up to complex multi-protocol attack detection,
or the detection of commonalities found in traffic anomalies of which the reason
is unknown. Thus, its complexity may range from low up to high. The same ar-
gumentation applies for the packet rate it must be able to process. Functionality
provided by the Service Handler may reside in the data path and/or in the control
plane. Since the Service Handler itself can be composed of various components,
full flexibility is required of PromethOS NP to install the specific components on
appropriate processors. It is important to notice that PromethOS NP distributes
internal control messages between different processors on the same mechanisms
as used for data communication, and imposes therefore no limitations. Depend-
ing on their complexity, service handlers are therefore instantiated either on CPs
or PPs of the required NP-blades. The Policy Handler provides management and
control functionality that supervises potentially all NP-blades. As an aggregat-
ing function with an expected low-bandwidth communication interface but high
service complexity, it is predestined to be instantiated in the PE on the host
GPP. Following this classification of the components, we specify the following
mapping of components on the hierarchy-extended platform:
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— Components with a low complexity and a high packet rate are placed on
packet processors most preferably. Thus, promising candidates are the
Packet Classifier, the Counter, Dispatchers as well as the Dropper. Depend-
ing on the complexity of the Service Handler, parts of it like byte-pattern
matching are candidates as well.

— Components with a high complexity and a low rate are installed either on
the control or on the host processor. The exact placement depends on the
kind of interaction among components. Thus, candidates to be installed on
these GPPs are the Rate Controller, the Policy Handler and the Capturer.
For obvious reasons, particular components of the Service Handler may or
must reside on GPPs, as well.

— The functionality dimension determines if a component can be installed on
packet processors or must be placed on GPPs. Data path components can
be installed anywhere. Although theoretically feasible on PPs; control and
management components that are triggered by timer events are installed on
GPPs. Thus we decide to place the Rate Controller on the respective CP of
the PPs, and place the Policy Handler on the host processor.

PDs provide resource accounting and enforcement mechanisms. By the means
of the Resource Controller, service re-configuration can be implemented to allow
for the relocation of service components at service run-time. Thus, service com-
ponents could be relocated if their location in the classification scheme changes.
However, our platform provides no explicit support for state preserving or ser-
vice component migration. Based on the measurements of the Rate Controller,
the Policy Handler could provide the required functionalities to trigger a re-
deployment of the service with different attributes.

5 Related Work

Various active router platforms following the component model have been pro-
posed for single processor systems [1,10,20]. However, only a few addressed the
problem of managing hierarchical active network nodes with integrated support
of NPs.

VERA [18] introduced the hierarchy of classifiers as a chain of classifiers
which is mapped on a model of a hierarchical router. It defines extensibility as
the ability to provide resources for additional services. However, the core com-
ponents of VERA do not provide at run-time extensibility, and VERA does not
deal with the complexity of instantiating services that span all tiers arbitrarily.
Compared with PromethOS NP, VERA takes programmability of packet pro-
cessors into account, but packets are forwarded to a statically linked operating
system running on the host GPP.

NetBind [4] proposes an approach to construct data paths dynamically on
a network processor based router. Low latency on dynamic binding is achieved
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due to post-processing of intermediary object files before linking the compo-
nents. For this reason, no overhead takes place at the execution time, except for
the machine code changes. In comparison to PromethOS NP, NetBind is not a
generic framework for adding new services on network processor based routers,
i.e., NetBind does not deploy services on all tiers of the processor hierarchy in
an integrated way.

SPLITS [12] creates a router architecture built of attached network processors
line cards and host processors. While SPLITS provides the same functionality as
VERA and NetBind for network processors, functionality is extended by stream
handlers that allow for flexible interception of packet flows to attach arbitrary
applications. Like VERA and NetBind, SPLITS does not address the potential
of CPs for the execution of services. However, we are convinced CPs are and
will be an important processing element on large hierarchical routers for router
scalability reason. Therefore, we provide the concepts and mechanisms required
for services of which service components reside on one, several or all processor
tiers including CPs.

The potential of active countermeasures against large-scale distributed de-
nial of service attacks in the Internet has been recognized before. FIDRAN [13]
proposes a service framework similar to ours. However, the service architecture
focuses on a single host GPP node only, and hence, is not able to benefit from
additional processing capabilities offered by a hierarchy extended active network
node. FLAME [2] built and evaluated a monitoring system that can be used to
detect distributed denial of service attacks. Similar to FIDRAN, the system is
designed for single host GPPs only. In [21], the application of re-configurable
hardware to detect signatures in payload of packets is proposed. While we are
convinced that the FPX is able to scan packets for signatures much faster than
our architecture, we argue that our architecture provides more flexibility as re-
quired for, e.g. selective packet capturers.

6 Conclusions and Outlook

In this paper, we have analyzed the problem space of detection mechanisms and
countermeasures against large-scale distributed denial of service attacks in the
Internet, and presented briefly the architecture of PromethOS NP. PromethOS
NP provides a dynamically extensible router platform for hierarchical network
nodes built of host and network processors for high-performance packet process-
ing. Motivated by the continuously increasing significance of the Internet to busi-
ness and commerce, and the always quicker spreading of newly created worms
and viruses, we have proposed a service architecture that allows for the efficient
deployment of new service functionalities to detect and counteract DDoS attacks
effectively on high-performance routers for the Internet backbone. The classifi-
cation scheme proposed in this paper alleviates the design and implementation
of specific Anti-DDoS service components that benefit from our service archi-
tecture, as well as from the flexibility and the capabilities of our PromethOS
NP router platform. Hence, we are convinced that our service architecture in
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conjunction with PromethOS NP provides the flexibility and performance re-
quired for detection mechanisms and countermeasures against DDoS attacks in
the Internet. Moreover, it is flexible enough to provide the basis for services in
completely different fields like charging and accounting of traffic. Currently, we
are implementing the proposed service architecture on PromethOS NP. The eval-
uation of this implementation with appropriate Anti-DDoS service components
will show whether our claims hold.
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