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Abstract—Anomaly extraction refers to automatically finding
in a large set of flows observed during an anomalous time |Reot-cause Analysis
interval, the flows associated with the anomalous event(s)t
is important for several applications ranging from root cause
analysis, to attack mitigation, and testing anomaly detedairs. In
this work, we use meta-data provided by severahistogram-based
detectors to identify suspicious flows and then applyassociation
rule mining to find and summarize event flows. Using rich traffic
data from a backbone network (SWITCH/AS559), we show that
our technique triggers a very small number of false positive, on Fig. 1. The high-level goal of anomaly extraction is to fileevd summarize
average between 2 and 8.5, which, in addition, exhibit speid  the set of anomalous flows that coincide with the flows caused betwork
patterns and can be trivially sorted out by an administrator. Our ~ event such as Denial of Service attacks or scans.
anomaly extraction method significantly reduces the work-lours
needed for analyzing alarms making anomaly detection systes
more practical. realized is practically very hard due to inherent limitagan

finding the precise ground truth of event flows in real-world

l. INTRODUCTION traffic traces. The goal of anomaly extraction is to find a set
of anomalous flowsoinciding with the event flows.

An anomaly detection system may provide meta-data rel-

Anomaly detection techniques are the last line of defenggant to an alarm that help to narrow down the set of
when other approaches fail to detect security threats @rotliandidate anomalous flows. For example, anomaly detection
problems. They have been extensively studied since they pa§stems analyzing histograms may indicate the histogras bi
anumber ofmteres_tl_ng research problems, involvingsiias, g anomaly affectede.g., a range of IP addresses or port
modeling, and efficient data structures. Neverthelessy thgmpers. Such meta-data can be used to restrict the camdidat
have not yet gained widespread adaptation, as a numberaabmalous flows to these that have IP addresses or port
challenges, like reducing the number of false positives giimpers within the affected range. In Table | we outline ulsef
simplifying training and calibration, remain to be solved.  meta-data provided by various well-known anomaly detactor

In this work we are interested in the problem of identifying T4 extract anomalous flows, one could build a model
the traffic flows associated with an anomaly during & timgescribing normal flow characteristics and use the model to
interval with an a_Iarm. We call flnd!ng these flows the anoMjentify deviating flows. However, building such a micropim
lous flow extraction problem or simplgnomaly extraction model is very challenging due to the wide variability of flow
At the high-level, anomaly extraction reflects the goal qfharacteristics. Similarly, one could compare flows dugng
gaining more information about an anomaly alarm, whicteryal with flows from normal or past intervals and seaxah f
without additional meta-data is often meaningless for th§anges, like new flows that were not previously observed or
network operator. Identified anomalous flows can be used iQ§yys with significant increase/decrease in their volume,[14
a number of applications, like root-cause analysis of trenev [7]. Such approaches essentially perform anomaly detectio

causing an anomaly, improving anomaly detection accuragy,ihe |evel of individual flows and could be used to identify
and modeling anomalies. anomalous flows
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A. Motivation

B. Anomaly Extraction

In Figure 1 we present the high-level goal of anomal9 Contributions
extraction. In the bottom of the figure, events with a network In this work, we take an alternative approach to identify
level footprint, like attacks or failures, triggevent flows anomalous flows that combines and consolidates information
which after analysis by an anomaly detector may raise &om multiple histogram-based anomaly detectors. Contpare
alarm. Ideally we would like to extract exactly all triggdre to other possible approaches, our method does not rely dn pas
event flows; however knowing or quantifying if this goal isddata for normal intervals or normal models. Intuitivelycka
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Il. METHODOLOGY

Protocol Maximum-Entropy [10]
Histogram [12], [23 . . . .

IP range Defe%t [16[] 1 [23] In the following sectlon_we give an overview of our ap-
MR-Gaussian [8] proach to anomaly extraction. Further, we discuss the Idetai
Dowitcher [21] of each functional block, namely histogram cloning and de-
Histogram [12], [23] . d . ith diff . .

Port range Maximum-Entropy [10] tecthn, meta— ata gengrgtlon wit dif erent voting &igas,
Histogram [12], [23] pre-filtering, and association rule mining.
DoWitcher [21]

TCP flags Maximum-Entropy [10]
Histogram [12], [23] .

Flow size DoWitcher [21] A. Overview

Packet size Histogram [12], [23]

An overview of our approach to the anomaly extraction
problem is given in Figure 3. It contains two subfigures that
illustrate the individual steps of our approach. The upper
subfigure depicts the anomaly detection and meta-data gen-
eration steps. These steps are applied for each trafficréeatu
The lower subfigure shows how association rule mining is
applied to suspicious flows. A subtle point of our approach
is filtering flows matchingany meta-data (in other words
we take theunion of the flows matching meta-data) instead
of flows matchingall meta-dataj.e., the intersection of the
flows matching meta-data. Assume for example the Sasser
worm that propagated in multiple stages: initially a large
number of SYN flows scanned target hosts, then additional
flows attempted connections to a backdoor on port 9996 of
the vulnerable hosts, and finally a third set of frequent flows
Fig. 2. Each detectoy supplies a set of suspicious flows;. We fiter ~resulted from downloading the 16-Kbyte worm executable.
the union set of suspicious flowsF; and apply association rule mining to Anomalies often result in such distinct sets of frequentsflow
extract the set of anomalous flows. with similar characteristics In addition, different meta-data

can relate to different phases of an anomaly. In our example,

the anomaly could be annotated with meta-data about the SYN
histogram-based detector provides an additional view 6f n@lag, port 9996, and the specific flow size. The intersection of
work traffic. A detector may raise an alarm for an interval anghe flows matching the meta-data would be empty, whereas
provide a set of candidate anomalous flows. This is illusttatthe union would include the anomalous flows.
in Figure 2, where a sdft; represents candidate flows supplied Qur approach consists of four main functional blocks.
by detectorj. We then use association rules to extract from
the unionUF; a summary of the anomalous flows,. The
intuition for applying rule mining is the following: anonais
flows typically have similar characteristics,g.,common IP
addresses or ports, since they have a common root-cause, lik
a network failure or a scripted Denial of Service attack. We
test our anomaly extraction method on rich network traffimda
from a medium-size backbone network. The evaluation result
show that our solution reduced the classification cost imser
of items that need to be manually classified by several orders
of magnitude. In addition, our approach effectively exteac
the anomalous flows in all 31 analyzed anomalies and on
average it triggered between 2 and 8.5 false positives,whic
can be trivially filtered out by an administrator.

Flow duration Histogram [12], [23]

TABLE |
USEFUL META-DATA PROVIDED BY VARIOUS ANOMALY DETECTORS. THE
LISTED META-DATA CAN BE USED TO IDENTIFY SUSPICIOUS FLOWS

@ OO
&

« Histogram cloning: To obtain additional traffic views
the distribution of a traffic feature is tracked by multiple
histogram clones. Each clone randomizes the distribution
using one oft independent hash functions. Upon detec-
tion of a disruption in the distribution each clone compiles
a list V. of traffic feature values that are associated with
the disruption.

« \Voting: Meta-data is compiled from the individual feature

value lists of clones by voting. More specifically, if a

certain feature value is selected by at leagiut of k

clones, it is included in the final meta-data. We analyze

the impact of different parameter settings faand k& on

the accuracy of our approach.

o Flow pre-filtering: We use the union set of meta-data
provided byn different traffic features to pre-filter a set
of suspicious flows. This pre-filtering is necessary since
it typically eliminates a large part of the normal flows.

o Association rule mining: A summary report of the
most frequent item-sets in the set of suspicious flows is

D. Outline

The rest of the paper is structured as follows. Section 2

describes our techniques for extracting anomalous traffim f
Netflow traces using histogram-based detectors and asisocia
rules. In Section 3, we describe the datasets used for thdy st

and present evaluation results. Related work is discugsed i

Section 4. Finally, Section 5 concludes the paper.

generated by applying association rule mining algorithms.
The basic assumption behind this approach is that the
most frequent item-sets in the pre-filtered data are often
related to the anomalous event. A large part of this work
is devoted to the verification of this assumption.
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Fig. 3. Overview of our approach to the anomaly extractioobfgm. The
upper figure illustrates how meta-data for a single traffatdes; is generater
by voting fromk histogram clones. The lower figure illustrates how the
data for filtering flows is consolidated from traffic features by taking th
union, and how suspicious flows are pre-filtered and anorsaftows are
summarized n item-sets by association rule mining.
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Fig. 4. Upper plot: KL distance time series for the sourcedBrass feature

for roughly two days. Lower plot: First difference of the Klisthnce for the

same period. The dashed line corresponds to the anomalstidatéhreshold.

In the remainder of this section we describe each functional

block in more detail.

B. Histogram Cloning and Detection

Coinciding distributions have a KL distance of zero, while
deviations in the distribution cause larger KL distanceugal
In general, the KL distance is asymmetfikp||q) # D(q||p).
Instead of training and recalibrating distributions theine-

Histogram-based anomaly detectors [12], [23], [16], [2Qent normal behavior, we use the distribution from the mnesi
have been shown to work well for detecting anomalous behgyzasyrement interval as reference distributiorHence, we
ior and changes in traffic distributions. We build a histegfa \yi| ghserve a spike in the KL distance time series each time

based detector that (i) appliésstogram cloningi.e., main-

the distribution changes. Assuming an anomalous event that

tains multiple randomized histograms to obtain additionghans multiple intervals, the KL distance will generatekepi
views of network traffic; and (i) uses the Kullback-Leiblety the peginning and at the end of an anomalous event. On the
(KL) distance to detect anomalies. Each histogram detec{gfer hand, changes in the total number of flows that do not

monitors a flow feature distribution,

like the distributionaye an impact on the distribution will not result in large KL

of source ports or destination IP addresses. We assuM&stance values. The KL distance time series for the sowce |

histogram-based detectors that correspond diifferent traffic

address feature over roughly two days is depicted in Figure 4

features and havex histogram bins. Histogram cloning pro-jn, the upper plot.

vides alternative ways to bin feature values. Classicahibo

We have observed that the first difference of the KL distance

groups adjacent feature valuesy.,adjacent source ports or IPyjne series is approximately normally distributed with cer

addresses. A histogram clone withbins uses a hash function

mean and standard deviation This observation enables

to randomly place each traffic feature value into a bin. Eagl) yerive a robust estimate, the median absolute deviation,

histogram-based detectgr= 1...n usesk histogram clones

with independent hash functiohs

of the standard deviatiod and of the anomaly detection
threshold3 6 from a limited number of training intervals. We

During time intervalt, an anomaly detection module CONgyenerate an alert when

structs histogram clones for different traffic features.ti¢

end of each interval, it computes for each clone the KL

distance between the distribution of the current interval a

Ay D(pllg) > 36

reference distribution. The KL distance has been sucdssfl? Figure 4, we show thed; D(plq) time series for the
applied for anomaly detection in previous work [10], [20]. 1Source IP address feature and the corresponding threshold.

measures the similarity of a given discrete distributioto a
reference distributiop and is defined as

D(pllg) = Zpi log (pi/ai)
i=0

INote that histogram cloning uses random projections asategommonly
used in sketch data structures that have been proposed ifitetegure.
Sketches aim at summarizing a data stream in a compact datéusé, which
can be used for answering various queries. In contraspdrein cloning is
a method to randomly bin histograms that does not target srmation. As
we discuss in the related work section, similar methods leeen proposed
in the literature [8], [16].

An alarm is only generated for positive spikes crossing the
threshold, since they correspond to significant increasdise
KL distance.

If we detect an anomaly during intervialve need to identify
the setB,, of affected histogram bins and the corresponding
set V. of feature values that hash into the affected bins.
The setV}, is then used to determine meta-data for filtering
suspicious flows.

To find the contributing histogram bins for each clone,
we use an iterative algorithm that simulates the removal of
suspicious flows untilA; D(pl||q) falls below the detection
threshold. In each round the algorithm selects theibivith



16 ‘ ‘ ‘ ‘ bound for the probability that an anomalous feature value is
included by more thai out of & clones
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and an upper bound for the probability that an anomalous
feature value is missed
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0 ° 20 nd 1 20 The probability that a normal feature value is included byeno
thank clones, on the other hand, is given by
Fig. 5. This Figure illustrates our incremental method fetedmining the &
anomalous bins. The KL distance converges to zero as in eaahdrthe k p k—i
bin with the largest absolute difference is aligned withdtginterpart in the P, = Z . (pn) (1 - Pn) (3)
reference distribution. Already after the first round the #istance decreases i=l
significantly.

Here we do not derive a bound since the considered events
are not correlated.

the largest absolute distangenx;c (. |p: — g:| between the To sum up, the meta-dafd; for featurej obtained after the

histogram of the previous and current interval. The remov4ting Process contain feature values representing noanl
of flows falling into bini is simulated by setting the bin count2nomalous traffic. The ratio between the two classes depends

in the current histogram equal to its value in the previof¥! the parameters and/, on the initial probabilityp,, and
interval (; = p:). The iterative process continues until thdh€ hash function length.

current histogram does not generate an alert any more. This

procedure is illustrated in Figure 5, where we plot the KD. Flow Pre-filtering

distance computed in each round. Already after the firstdoun |n the pre-filtering step we select all flows in time interval
the KL distance decreases significantly. Having identifteal t; that match theunion of the meta-data provided by
set of anomalous histogram bif, for each clone, we obtain detectorsi.e., all flows that matchu)M; wherej = 1, ..., n are
the corresponding set of feature valugsby keeping a map filtered. Pre-filtering usually removes a large part of thenma

between values and corresponding bins. traffic. This is desirable for two reasons. Firstly, it geates
a substantially smaller dataset that results in fastergasing
C. Voting and Meta-data Generation in the following steps and secondly it improves the accuracy

The cardinality of Vi is typically much larger than the of assocu’_:\t_lon_rule mining by removing flows that might cause
false positive item-sets.

cardinality of By, e.g.,the 65’000 unique port numbers are
distributed evenly over 1024 bins if we use a 10-bit hashfunc
tion for randomization. Therefore the set of feature valigs E- Association Rule Mining
provided by each clone is likely to contain normal feature Association rules describe items that occur frequently to-
values colliding on anomalous bins. Usikgclones a normal gether in a dataset and are widely-used for market baskét ana
feature value has a small probability @f/m)* to appear in ysis. For example, a rule might reflect that 98% of customers
an anomalous bin in ak clones. that purchase tires also get automotive services [1]. Filyma
In our previous work [3], we keep feature values that havet a transactioril’ be a set ofh itemsT = {e1,...,en}.
been identified by all histogram clondg; = (1, Vi in order Then the disjoint subset¥,Y C I define an association rule
to minimize false positives. We generalize this approach & — Y. The support of an association rule is equal to the
a more flexible scheme that is based on voting. In particulmumber of transactions that contalthU Y.
voting keeps a feature value if it has been selected by atlleas The problem of discovering all association rules in a ddtase
out of k& clones. With this approach the trade-off between falssan be decomposed into two subproblems: (i) discover the
positives and false negatives can be adjusted via the p&gsmmefrequent item-sets,e., all item-sets that have a support above
k andl. a user-specified minimum support; and (ii) derive assamiati
Let's assume that each of thle clones has detected arules from the frequent item-sets.
disruption in the distribution of featurg in interval ¢, and Our motivation for applying association rules to the angmal
has identifiedb responsible bins. Each clone includes aextraction problem is that anomalies typically result iregk
anomalous feature value in the sEt with probability p,, number of flows with similar characteristiasg.,IP addresses,
while a normal feature value is selected only if it collides oport numbers, or flow lengths, since they have a common root-
one of the selected bins, and has thus a selection prolyabitiause like a network failure, a bot engine, or a scripted &eni
of p,, = b/m wherem is the total number of bins. of Service (DoS) attack. Each transactircorresponds to a
If an anomalous value is included by one clone it is likeljNetFlow record and the items to the following seveni = 7)
that it will also be included by the other clones as these tsveflow features: srclP, dstIP, srcPort, dstPort, protocohcipts,
are not independent. Consequently, we can derive a low#ytes. For example, the item = {srcPort : 80} refers to



srclP dstIP srcPort dstPort #packets #bytes support  what

|

1 * * * * 2 * 10,407

1 * * * 25 * * 22,659

2 Host A * * 80 * * 11,800 HTTP Proxy
2 * * * 80 6 * 35,475

2 Host B * * 80 * * 14,477 HTTP Proxy
2 * * * 80 7 * 16,653

2 Host C * * 80 * * 15,230 HTTP Cache
2 * * * 80 5 * 58,304

3 * * * 80 1 46 17,212

3 * * * 80 1 48 11,833

3 * * * 80 1 1024 23,696

3 * * * 7000 1 48 12,672 Dist. Flooding
4 * Host D * 9022 1 48 22,573 Backscatter
5 * Host E 54545 7000 1 46 23,799 Dist. Flooding
5 * Host E 45454 7000 1 46 15,627 Dist. Flooding

TABLE Il

FREQUENT ITEM-SETS COMPUTED WITH OUR MODIFIEDAPRIORI ALGORITHM. THE INPUT DATA SET CONTAINED350,872FLOWS AND THE MINIMUM
SUPPORT PARAMETER WAS SET Td0,000FLOWS. IP ADDRESSES HAVE BEEN ANONYMIZED

a source port number equal to 80, while= {dstPort : 80} anomalies more challenging, we manually added to the can-
refers to a destination port number equal to 80./Atem-set didate setJF}; flows that had one of the three most frequent
X ={e1,...,e} is a combination of different items. The destination ports but had not been flagged by all histogram
largest possible item-set israitem-set that contains a feature-clones. In particular, the most popular destination portsew
value pair for each of the seven features. A transaction or part 80 that matched 252,069 flows, port 9022 that matched
[-item-set cannot have two items of the same featerg,, 22,667 flows, and port 25 that matched 22,659 flows. Thus,
X = {dstPort : 80,dstPort : 135} is not valid. The support in total the input seUF; contained 350,872 flows. For our
of an [-item-set is given by the number of flows that matckexample, we set the minimum support parameter to 10,000
all / items in the set. For example, the support of2kiieem-set flows and applied our modified Apriori to the flow sef;.

X = {dstIP :129.132.1.1,dstPort : 80} is the number of  The final output of the algorithm is given in Table II, which
flows that have the given destination IP address and the givists a total of 15 frequent item-sets. In the first iteration
destination port. a total of 60 frequent 1l-item-sets were found. 59 of these

Apriori Algorithm The standard algorithm for discoveringvere, however, removed from the output as subsets of at least
frequent item-sets is the Apriori algorithm by Agrawal an@ne frequent 2-item-set. In the second iteration, a total®f
Srikant [1]. Apriori makes at most passes over the data.frequent 2-item-sets were found. Again, 72 2-item-setdccou
In each round, = 1...h, it computes the support for all be remoyed. since they were subse.ts of frequent 3-item-sets.
candidatd-item-sets. At the end of the round, the frequent !N the third iteration, 41 frequent 3-item-sets were fouof,
item-sets are selected, which are titem-sets with frequency Which four item-sets were not deleted from the output. In
above the minimum support parameter. The frequent item-skte fourth round, 10 frequent 4-item-sets were found buy onl
of round! are used in the next round to construct candidaf€ Of them remained after removal of redundant 4-item-sets
(1+1)-item-sets. The algorithm stops when (ie-1)-item-sets Two frequent 5-item-sets were found in round five. Finally,

with frequency above the minimum support are found. the algorithm terminated as no frequent 6-item-sets yaiigf
the minimum support were found.

i . : : Three out of the 15 frequent item-sets had destination port
finds. We modify this to output onlj-item-sets that are not 47000. We verified that indeed several compromised hosts were

subset of a more Sp.ec'f(¢+ 1)-|_tem-set. More_ specmc_ ftem- flooding the victim host E on destination port 7000. Regagdin
sets are desirable since they include more information tab?u

a possible anomaly. This measure allows us to significan Pe other frequent item-sets, we verified that hosts A, B,@Gnd

. V\x]ich sent a lot of traffic on destination port 80, were HTTP
reduce the number of item-sets to process by a human exper
We denote the final set of-item-sets as/. The Apriori

proxies or caches. The traffic on destination port 9022 was
: . - backscatter since each flow has a different source IP address
algorithm takes one parameteg., the minimum supportas
input. If the minimum support is selected too small, man

and a random source port number. The remaining item-sets
: ! o AN fer to combinations of common destination ports and flow
item-sets representing normal flows (false positives) bl . .
: . . .. sizes and are thus not likely of anomalous nature. These item
included in the output. On the other hand, if the minimum S D

. . ' ets can be easily filtered out by an administrator.
support is selected too large, the item-sets represerniiag

anomalous flows might be missed (false negative).

Apriori Example In the following we give an example
of using Apriori to extract anomalies. In the used 15-minute The various parameters associated with our approach, and
trace, destination port 7000 was the only feature value thaeir range as used in the evaluation of this work, are sum-
was flagged by all histogram clones. It contributed 53,46Warized in Table Ill. Although most of the parameters are
candidate anomalous flows. To make the problem of extractiagsociated with the detection part of our approach, they als

By default, Apriori outputs all frequenttitem-sets that it

F. Parameter Estimation



zarameter Bﬁsr'rfggrt'g? Jetecions Sange the solutions with Igrgem, i.e., smaller bins, are preferable

w Interval length [5,10,15] min for anomaly extraction.

m Hash function length [512,1024,2048] Voting parameters [ and k: The parametek determines

y c&mgegeﬁ;ﬂg?:f 0 the total number of histogram clones used. The computdtiona

s Minimum support 3,000-10,000 flows| requirements in terms of memory and CPU scale linearly with

TABLE Il k. Moreover, the parametérhas an impact on the probability

PARAMETERS INCLUDING DESCRIPTION AND RANGE As USED INTHE  that a feature value remains in the meta-data after voting an

EVALUATION SECTION OF THIS WORK thus on accuracy. The parametetetermines the lower bound

for the number of clones that need to select a feature value fo
it to be included in the final meta-data. Therefarean vary
) ) ) between 1, corresponding to the union, @ndepresenting the
have an impact on the extraction part. In the following Wgtersection. Just liké:, the parametet impacts the number
descn_be each parameter in deta|l_ and provide criteria fgf fiows selected in the pre-filtering step and thus the acyura
selecting the correct parameter settings. of our approach. The parameter settings lf@and & can also
Number of detectors n: As the number of detectorspe obtained by simulation using Equation 1 and 3. Simulation

increases further information can be exploited for idemd results forP, and P, for different settings of and % will be
anomalies and therefore a largds generally desired. In this presented in the evaluation section.

work we use five detectors, where each detector monitors on@vlinimum support s: The parameters determines the

of the following features: source IP address, destinat®n frequency threshold above which an item-set is extracted by

address, source port number, destination port number, @imRpriori as a possible set of anomalous flows. A lasgxtracts

of packets per flow. Other features that might be useful fao or few item-sets, which in our experiments were almost

anomaly detection purposes are the number of packets BRfays associated with anomalous events. On the other hand,

flow, the average packet size, or the flow duration. decreasings results in more item-sets and in a small but
Interval length w: The interval lengthw determines the higher rate of false positives. By progressively decreasin

detectable anomaly scalég., it becomes harder to detectthe administrator can create a rank of suspecious item-sets

short disruptions that contain only few flows with longemn decreasing order of confidence. Therefore, the paranaeter

intervals. On the other hand, it is not always desirable teate does not require any special calibration but is manipulated

such short disruptions. Hence, the desired number of dajly the administrator to progressively extract and analyze

or weekly anomalous alarms can be used to set the intergaditional item-sets. The parameteris set by the user in

lengthw. The desired number of alarms depends on the avadh iterated fashion. One starts off with a larger value and

able human resources for investigating alarms. Some studiecreases in each round until sufficient anomalous flow-sets

report that actionable alarms require on average 60 minuteg/e been investigated.

investigation time [19], which would correspond to 8 alarms In summary, the parametersand s are the simplest as

per day assuming a full-time employ for analyzing alarmshould generally be large involving additional useful teas

Another issue related to the interval length is the detectiand s should be varied by the user to investigate different

delay as an anomaly can only be detected at the end ohomalies. The parametarsandm are mainly involved in a

given interval. Typically used intervals correspond taagslof detection sensitivity versus aggregation trade-off. Tirasle-

few minutes, e.g., 5 to 15 minutes. However, a sliding windowff should be settled based on the average number of daily

mechanism can shorten this delay. Finally, one last imfitina or weekly anomalous alarms. Having set this trade-off, #hen

is that a largenw results in more flows to be processed byargem, i.e., smaller bins, is desired for anomaly extraction,

association rule mining and in higher computational ovache which should be balanced by a larger i.e., 15 minutes in

Nevertheless, the overhead of association rule miningvis l@ur experiments, to achieve sufficient aggregation. Rintie

as we discuss in the next section. parameter¢ and k serve to balance the number of false and
Hash function length m: The hash function lengthn true positives produced by pre-filtering. A range of acceleta

is also involved in a detection sensitivity versus aggriegat values can be determined by simulations using the discussed

trade-off we discussed for parameter The smaller the analytical models.

hash function length the more flows are aggregated per hash

function bin. In addition, a largem is desired for anomaly I1l. EVALUATION

extraction as it decreases the probabiliyy that a normal

feature value remains in the meta-data after voting and, th

the number of candidate flows for rule mining. Finally, th

parameter also affects the required memory resources. % accuracy of our approach, as well as the reduction in

suming that the available memory resources do not drive t ssification cost. in terms of fiows or item-sets

choice ofm, then an acceptable range of values can be first ' '

determined via simulation using Equation 3 and a targetean

for P,,. Then,m should be selected together withbased on a A- Data Set and Ground Truth

desired number of daily/weekly anomalous alarms. Among theTo validate our approach we used a Netflow trace com-

possible {n, w) choices realizing a desired number of alarmsng from one of the peering links of a medium-sized ISP

In this section we first describe the traces we used for
Bur experiments and then evaluate each step of our approach
or different parameter settings. In particular, we evidua



Anomaly class Occurrences | Mean #flows

Flooding 5 163'139

Backscatter 5 85'716

Network Experiment 3 27’606

DDoS 5 132’509 g
Scanning 16 96'375 2
Spam 1 33'765 2
Unknown 1 23'360 o
Total 36 99688 o

TABLE IV
IDENTIFIED ANOMALIES IN TWO WEEKS OFNETFLOW DATA SEPARATED
BY ANOMALY CLASS. FOR EACH CLASS WE GIVE THE NUMBER OF

OCCURRENCES AND THE AVERAGE NUMBER OF FLOWS CAUSED BY THIS 001 002 003 004 . 06 007 008
CLASS OF ANOMALY.

Fig. 6. ROC curves plotting the false positive rate versesithe positive rate
for different thresholds. The three curves correspond fierént histogram
clones.

(SWITCH/AS559). SWITCH is a backbone operator con-
necting all Swiss universities and various research lalig, To assess the detection accuracy, we used ROC curve
CERN, IBM, PSI, to the Internet. We have been collectingnalysis. We computed the number of false positives,
non-sampled and non-anonymized NetFlow traces from thigervals that have an alarm but are not in the ground truth se
peering links of SWITCH since 2003. The SWITCH IPand true positivesi.e., intervals that are in the ground truth
address range contains approximately 2.2 million IP adé#es set and have an alarm. A ROC curve plots the false positive
On average we see 92 million flows and 220 million packetate (FPR), the ratio between the number of false positives
per hour crossing the peering link we used for our experisienand the total number of intervals that are not in the ground
The dataset used for this study was recorded during Decembagth set versus the true positive rate (TPR), the ratio betw
2007 and spans two continuous weeks. the number of true positives and the total number of interval
To generate datasets for evaluating the Apriori algorithrwjth an alarm. Different points in the ROC space are obtained
we computed the KL distance timeseries for the two weeks by varying the detection threshold.
data for the following feature distributions: source |P g, In Figure 6 we plot ROC curves for three histogram clones,
destination IP address, source port number, destination pice.,using three different hash functions. A detection rate 8f 0.
number, and flow size in packets. We manually identified 3brresponds to a false positive rate of 0.03, while a detecti
anomalous intervals by visual inspection and topueries rate of 1 (100%) to a false positive rate between 0.05 and
on the data. To determine the root cause of each anoma@y)8 for different clones. With a false positive rate as l@sv a
we extracted all flows in an anomalous interval and analyz€d1 only 40% of the anomalies are detected. These results
the timeseries and distribution of the five features, the tlaee a lower bound on the performance of our detector. This
number of packets and bytes per flow, the flow inter-arrivid because some of the false-positive intervals might donta
times, and the flow durations. We found a total of 36 differeninknown anomalous traffic.
events within the 31 the anomalous intervals. The identified
anomalies, their class, and the average number of flows @&rImpact of Voting

class are listed in Table IV. After the correct interval has been determined, each clone

Subsequently, we computed the set of candidate anomalgggects) histogram bins that are suspected to contain anoma-
flows UF; for each anomalous interval using our modifieghys flows. The number of responsible bins is determined
Apriori algorithm. After applying Apriori, we manually ana py the detection threshold and the nature of the anomaly,
lyzed the found frequent item-sets and identified true p@sit e  whether it is distributed over many feature values or
which matched the identified events, and false positive&iwh cgncentrated on a single or few feature values. The prababil
matched benign traffic. pa that a clone correctly identifies an anomalous feature value
is equal to the probability that an anomalous feature vahse h
caused the disruption in the histogram, and that the dignupt
in the respective interval has been detected.

As a first step we evaluated tltetection accuracyf our We analyze the impact of voting using simulations. Each
histogram-based detector for different values of the uatier clone includes an anomalous feature value in thelgetith
length w and the hash function lengtim. We found small probability p,, while a normal feature value is selected only
differences in the detection results for equal to 512, 1024, if it collides on one of the selected bins with probability
and 2048. We also found that the number of detectiopg = b/m. For simulating the impact of different voting
decreases with the interval length In particular, settingn ~ strategies on the error probabilities according to Equafio
to 1024 andw to 5, 10, and 15 minutes, we detected 62nd 3, we sep, = 0.8, corresponding to a false positive rate
52, and 31 anomalous intervals, respectively. Based ore the$ approximately 0.037¢ = 1024) and variedb in the range
number and the parameter selection guidelines we analyze®5].
in Section II-F, we setv conservatively to 15 minutes, which In Figure 7 the upper bound for the probabilify; that
corresponds to 2.2 alarms per day, ando 1024. an anomalous feature value is missed is plotted for difteren

B. Accuracy of Histogram Clones



P_ (anomalous feature value is missed)

Fig. 7. Upper bound for the probabilit#?; that an anomalous feature value
is eliminated by voting for different values baindk in logarithmic scale. The
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different values ofl and & in logarithmic scale. The number
of selected bins i9 = 1 and b = 25, respectively. The
number of total bins isn = 1024 for both plots. The results
for [ = 1,1 = 5 are marked for better readability. For a
given value ofk, P, decreases withi, e.g.,for / = 1 and

k = 10 the probability for including a normal feature value is
P,=10"2forb=1andP, = 0.22 for b = 25. Forl =5
andk = 10 the probability decreases 19, = 10~ 13 forb = 1

and toP, = 10~ for b = 25. Moreover, we observe that the
probability of including a normal feature value in the meta-
data increases dramatically with the number of anomalous
bins b. Consequently, assuming a fixed setting of the voting

results forl = 5, [ = 10 are marked for better readability. For a given valugparameters we have to tolerate higher false positive rates f

of k, P increases with, e.g., forl = 5, &k = 10 we obtain P; = 0.006
while for I = 10, £ = 10 the probability increases t&#; = 0.89.

values ofl and k in logarithmic scale. The results fér= 5,

anomalies affecting multiple bing.g.,distributed anomalies.
Alternatively, the parametdr could be adapted based on the
estimated number of binisto achieve a target probabiliti, .

The average number of false positive feature values can be

I = 10 are marked for better readability. For a given value ¢t€termined by multiplication of>, with the average number
k, P; increases with, e.g.,for [ = 5 andk = 10 we obtain of feature values observed within one intenvalg., between

P, = 0.006, while for I = 10 and k = 10 the probability ©Nn€ and 65’536 for port numbers. _ _
increases ta? = 0.89. Consequently, the upper bound for a The simulation results _show that a variety of operating
fixed number of histogram clonésincreases with the numberPOINts [P, P,] can be achieved by setting the voting param-
of clones! that are required to agree on a feature value. §{€rsl, & appropriately. In order to determine the parameters
particular, it has its minimum fok = 1, which corresponds to that provide the best overall performance, in terms of aamur
the union, and is maximized fdr= k, which corresponds to and computational overhead, the following rule mining step
the intersection.

P(normal feature value is not eliminated)

P(normal feature value is not eliminated)
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needs to be taken into account. The essential questions to
answer are i) how is the accuracy impacted by the number of
normal feature values included in the meta-data that is used
for pre-filtering the candidate flows, and ii) how does thesrul
mining performance decrease with the number of candidate
flows.

D. Accuracy of Rule Mining

After the meta-data has been identified by voting, the
corresponding flows are filtered and subsequently send to
the rule mining process. The accuracy in terms of correctly
identified item-sets depends on three parameters: theagcur
of the meta-data used for per-filtering flows, the frequerfcy o
the pre-filtered normal and anomalous flows, and the minimum
support parametet.

An interesting question concerning the accuracy of meta-
data is: What is the probability that a normal value in theanet
data results in a false positive item-set. Recall that an-et
will be generated if more thanflows matching the meta-data
have one (1-item-set) or moré-ifem-set) common feature
values. We have observed that the probability for genegatin
a false positive item-set from a normal feature value is lgigh
skewed. For example, if port number 80 is included in the
meta-data it is likely that webservers with high load will
appear as false positive 2-item-sets in the output of Aprior
Nevertheless, they will be easy to identify as such. On the

Fig. 8. ProbabilityP, that a normal feature value is not eliminated by votinghther hand, if other less frequent port numbers are chosen,

for different values of and in logarithmic scale. The number of anomalou
bins isb = 1 (upper plot) andb = 25 (lower plot) and the number of total

bins ism = 1024.

*few flows will match the feature value and no false positive

item-set will be generated.
To further study the rule mining accuracy, we used the flow

In Figure 8(a) and Figure 8(b) we plot the probabilfy; data of the 31 anomalous intervals. To generate the inpat dat
that a normal feature value is not eliminated by voting faets for Apriori, we set to 3,1 to 3, andm to 1024. This
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Fig. 9.  Number of false positive (FP) item-sets generatedApyiori

for different minimum support parameter values for 10 anloos intervals
(30%). For 21 anomalous intervals (70%) we obtain no FP Beis-at all.
The average FP item-set count over all 31 anomalous intgeivaharked with

squares. Therefore, it will appear as a frequent item-set. Anomalies
that affect certain network ranges, such as outages omgputi
anomalies can be either captured by using IP address prefixes

corresponds td; =0.488 andP, = 10~* for b = 25. Despite as additional dimensions for rule mining, or by applying

the large value fo?; none of the 31 anomalies were missedzoncepts from the hierarchical heavy-hitter detection @iom

This illustrates the fact thaP; is an upper bound that was[6].

derived under the assumption of independence betweensclone

On the othqr hand, a& is very low, only few normal feature g Computational Overhead of Rule Mining

values are included in the meta-data.

For 21 anomalous intervals (70%) we obtained no FP ite
sets at all. The number of FP item-sets for the remaini

Fig. 10. Average decrease in classification cost vs. mininsupport.

The exact computational overhead of Apriori depends
rHl’ghly on the implementation used. Progressive implementa
: . . M¥ns that use FP-trees and database partition techniq@gs [
10 anomalous intervals is plotted in Figure 9 together wi ave been shown to outperform standard hash tree implemen-

the average number of FP item-sets over all 31 anomalo[aﬁons [1]. Nevertheless, for all implementations the paita-

intervals (marked with squares). The number of FP tem-S§{Shal overhead increases with the number of transactiads a

decreases with the minimum support since less FP item-Sgig b, ner of frequent 1-item-sets. Since both, the number o

satisfy the rgmtlmum Zuppé)r; golr;gn.lton. Flgture 9 shows tth(ﬁtmsactions and the number of frequent 1-item-sets igerea
on average between < and ©. item-Sets are generated, [of, e normal flows are included in the input data set, the

minimum support values be_twee_n 3’000. and 10,000 flo erformance of Apriori will decrease with the size of theubp
respectively. The top three lines in the figure correspond a sete.g.,when we lower the threshold of the histogram-

anomalies with higher numbers of FP item-sets. The obsergel y yetectors or do not use the meta-data at all Moreover,

F_P item-sets are exclusively caused bgomalousheavy- some implementations show considerably longer computatio
hitter feature values such as common poetg,., port 80, or

automatically increases even if mormal feature values are | non-optimized implementation in Python, the computation

included in the meta-data. Hc_Jwever, most of the F_P_ M-S Serhead was small requiring few seconds up to minutes in
can be sorted out rather easily by a network admmlstrator.the worst case

An important question is which types of anomalies are
captured with our rule mining approach. There are two reguir ) o
ments for extracting an anomaly. The anomaly should: i) ffe Decrease in Classification Cost
detected by causing a deviation in a traffic feature distidou ~~ Using association rules we obtain a summarized view
and ii) trigger a large number of flows with similar charaetetthat is based on frequent item-sets instead of flows. As
istics. For many anomalies that originate from or termintate a consequence, the problem of manually classifying flows
a single or few IP addresses these requirements are met. Scam be reduced to the problem of classifying item-sets. To
ning, flooding, and spamming activity, (distributed) Dérd& quantify this decrease in classification cost, we assuntehiba
Service attacks as well as related backscatter fall ints thdlassification cost is a linear function of the number of ikem
category. Although the rule mining approach is not targetedat need to be classified. Accordingly, we define the reduocti
at botnet detection, anomalous activities such as spammiirg classification cost- for a given dataset as = |F|/|I|
scanning or flooding are often caused by compromised hostéere|F'| denotes the number of flows in the flagged interval
Other anomalies may not be concentrated on a single and |I| the number of item-sets in the output of Apriori.
few IP addresses like network outages, routing anomalid$)e number of flows in 15-minute intervals ranges between
or distributed scanning. Distributed scanning activitgitally 700,000 and 2.6 million flows. Since the cardinality bf
has a common destination port and often a fixed flow lengttiepends on the minimum support parameter, we plot in Fig.
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10 the reduction in classification cost for different valwés detector testing. We presented a histogram-based dethator
the minimum support parameter. The average cost reductyovides fine-grained meta-data for filtering suspect flows.
increases with the minimum support and ranges betweEuarther, we introduced a method for extracting and summa-
600,000 and 800, 000. The cost reduction saturates for largerizing anomalous flows. Our method models flows as item-
minimum support parameters as the minimum number of itersets and mines frequent subsets. It finds large sets of flows
sets is reached. This result illustrates that associatide rwith identical values in one or more features. Using dagaset
mining can greatly simplify root-cause analysis and attadkom a backbone network we showed that rule mining is
mitigation. very effective, extracting in all studied cases the invdlve
event flows and triggering a low nuumber of false positives
IV. RELATED WORK in certain cases that could be trivially sorted out. Though w
Substantial work has focused on dimensionality reductidvave tested our method with a specific detector, the pregente
for anomaly detection in backbone networks [2], [22], [24]anomaly extraction approach is generic and can be used with
[15], [10Q], [4], [12]. These papers investigate technigaes other detectors providing useful meta-data about idedtifie
appropriate metrics for detecting traffic anomalies, bundb anomalies.
focus on the anomaly extraction problem we address in this
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