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Abstract—Anomaly extraction refers to automatically finding
in a large set of flows observed during an anomalous time
interval, the flows associated with the anomalous event(s).It
is important for several applications ranging from root cause
analysis, to attack mitigation, and testing anomaly detectors. In
this work, we use meta-data provided by severalhistogram-based
detectors to identify suspicious flows and then applyassociation
rule mining to find and summarize event flows. Using rich traffic
data from a backbone network (SWITCH/AS559), we show that
our technique triggers a very small number of false positives, on
average between 2 and 8.5, which, in addition, exhibit specific
patterns and can be trivially sorted out by an administrator. Our
anomaly extraction method significantly reduces the work-hours
needed for analyzing alarms making anomaly detection systems
more practical.

I. I NTRODUCTION

A. Motivation

Anomaly detection techniques are the last line of defense
when other approaches fail to detect security threats or other
problems. They have been extensively studied since they pose
a number of interesting research problems, involving statistics,
modeling, and efficient data structures. Nevertheless, they
have not yet gained widespread adaptation, as a number of
challenges, like reducing the number of false positives or
simplifying training and calibration, remain to be solved.

In this work we are interested in the problem of identifying
the traffic flows associated with an anomaly during a time
interval with an alarm. We call finding these flows the anoma-
lous flow extraction problem or simplyanomaly extraction.
At the high-level, anomaly extraction reflects the goal of
gaining more information about an anomaly alarm, which
without additional meta-data is often meaningless for the
network operator. Identified anomalous flows can be used for
a number of applications, like root-cause analysis of the event
causing an anomaly, improving anomaly detection accuracy,
and modeling anomalies.

B. Anomaly Extraction

In Figure 1 we present the high-level goal of anomaly
extraction. In the bottom of the figure, events with a network-
level footprint, like attacks or failures, triggerevent flows,
which after analysis by an anomaly detector may raise an
alarm. Ideally we would like to extract exactly all triggered
event flows; however knowing or quantifying if this goal is
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Fig. 1. The high-level goal of anomaly extraction is to filterand summarize
the set of anomalous flows that coincide with the flows caused by a network
event such as Denial of Service attacks or scans.

realized is practically very hard due to inherent limitations in
finding the precise ground truth of event flows in real-world
traffic traces. The goal of anomaly extraction is to find a set
of anomalous flowscoinciding with the event flows.

An anomaly detection system may provide meta-data rel-
evant to an alarm that help to narrow down the set of
candidate anomalous flows. For example, anomaly detection
systems analyzing histograms may indicate the histogram bins
an anomaly affected,e.g., a range of IP addresses or port
numbers. Such meta-data can be used to restrict the candidate
anomalous flows to these that have IP addresses or port
numbers within the affected range. In Table I we outline useful
meta-data provided by various well-known anomaly detectors.

To extract anomalous flows, one could build a model
describing normal flow characteristics and use the model to
identify deviating flows. However, building such a microscopic
model is very challenging due to the wide variability of flow
characteristics. Similarly, one could compare flows duringan
interval with flows from normal or past intervals and search for
changes, like new flows that were not previously observed or
flows with significant increase/decrease in their volume [14],
[7]. Such approaches essentially perform anomaly detection
at the level of individual flows and could be used to identify
anomalous flows.

C. Contributions

In this work, we take an alternative approach to identify
anomalous flows that combines and consolidates information
from multiple histogram-based anomaly detectors. Compared
to other possible approaches, our method does not rely on past
data for normal intervals or normal models. Intuitively, each
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Meta-data Anomaly detection technique
Protocol Maximum-Entropy [10]

Histogram [12], [23]
IP range Defeat [16]

MR-Gaussian [8]
DoWitcher [21]
Histogram [12], [23]

Port range Maximum-Entropy [10]
Histogram [12], [23]
DoWitcher [21]

TCP flags Maximum-Entropy [10]
Histogram [12], [23]

Flow size DoWitcher [21]
Packet size Histogram [12], [23]
Flow duration Histogram [12], [23]

TABLE I
USEFUL META-DATA PROVIDED BY VARIOUS ANOMALY DETECTORS. THE

LISTED META-DATA CAN BE USED TO IDENTIFY SUSPICIOUS FLOWS.

F� F�F� F�
F�

Fig. 2. Each detectorj supplies a set of suspicious flowsFj . We filter
the union set of suspicious flows∪Fj and apply association rule mining to
extract the set of anomalous flowsFA.

histogram-based detector provides an additional view of net-
work traffic. A detector may raise an alarm for an interval and
provide a set of candidate anomalous flows. This is illustrated
in Figure 2, where a setFj represents candidate flows supplied
by detectorj. We then use association rules to extract from
the union∪Fj a summary of the anomalous flowsFA. The
intuition for applying rule mining is the following: anomalous
flows typically have similar characteristics,e.g.,common IP
addresses or ports, since they have a common root-cause, like
a network failure or a scripted Denial of Service attack. We
test our anomaly extraction method on rich network traffic data
from a medium-size backbone network. The evaluation results
show that our solution reduced the classification cost in terms
of items that need to be manually classified by several orders
of magnitude. In addition, our approach effectively extracted
the anomalous flows in all 31 analyzed anomalies and on
average it triggered between 2 and 8.5 false positives, which
can be trivially filtered out by an administrator.

D. Outline

The rest of the paper is structured as follows. Section 2
describes our techniques for extracting anomalous traffic from
Netflow traces using histogram-based detectors and association
rules. In Section 3, we describe the datasets used for this study
and present evaluation results. Related work is discussed in
Section 4. Finally, Section 5 concludes the paper.

II. M ETHODOLOGY

In the following section we give an overview of our ap-
proach to anomaly extraction. Further, we discuss the details
of each functional block, namely histogram cloning and de-
tection, meta-data generation with different voting strategies,
pre-filtering, and association rule mining.

A. Overview

An overview of our approach to the anomaly extraction
problem is given in Figure 3. It contains two subfigures that
illustrate the individual steps of our approach. The upper
subfigure depicts the anomaly detection and meta-data gen-
eration steps. These steps are applied for each traffic feature.
The lower subfigure shows how association rule mining is
applied to suspicious flows. A subtle point of our approach
is filtering flows matchingany meta-data (in other words
we take theunion of the flows matching meta-data) instead
of flows matchingall meta-data,i.e., the intersection of the
flows matching meta-data. Assume for example the Sasser
worm that propagated in multiple stages: initially a large
number of SYN flows scanned target hosts, then additional
flows attempted connections to a backdoor on port 9996 of
the vulnerable hosts, and finally a third set of frequent flows
resulted from downloading the 16-Kbyte worm executable.
Anomalies often result in such distinct sets of frequent flows
with similar characteristics. In addition, different meta-data
can relate to different phases of an anomaly. In our example,
the anomaly could be annotated with meta-data about the SYN
flag, port 9996, and the specific flow size. The intersection of
the flows matching the meta-data would be empty, whereas
the union would include the anomalous flows.

Our approach consists of four main functional blocks.

• Histogram cloning: To obtain additional traffic views
the distribution of a traffic feature is tracked by multiple
histogram clones. Each clone randomizes the distribution
using one ofk independent hash functions. Upon detec-
tion of a disruption in the distribution each clone compiles
a list Vk of traffic feature values that are associated with
the disruption.

• Voting: Meta-data is compiled from the individual feature
value lists of clones by voting. More specifically, if a
certain feature value is selected by at leastl out of k
clones, it is included in the final meta-data. We analyze
the impact of different parameter settings forl andk on
the accuracy of our approach.

• Flow pre-filtering: We use the union set of meta-data
provided byn different traffic features to pre-filter a set
of suspicious flows. This pre-filtering is necessary since
it typically eliminates a large part of the normal flows.

• Association rule mining: A summary report of the
most frequent item-sets in the set of suspicious flows is
generated by applying association rule mining algorithms.
The basic assumption behind this approach is that the
most frequent item-sets in the pre-filtered data are often
related to the anomalous event. A large part of this work
is devoted to the verification of this assumption.
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Fig. 3. Overview of our approach to the anomaly extraction problem. The
upper figure illustrates how meta-data for a single traffic featurej is generated
by voting fromk histogram clones. The lower figure illustrates how the meta-
data for filtering flows is consolidated fromn traffic features by taking the
union, and how suspicious flows are pre-filtered and anomalous flows are
summarized n item-sets by association rule mining.

In the remainder of this section we describe each functional
block in more detail.

B. Histogram Cloning and Detection

Histogram-based anomaly detectors [12], [23], [16], [20]
have been shown to work well for detecting anomalous behav-
ior and changes in traffic distributions. We build a histogram-
based detector that (i) applieshistogram cloning, i.e., main-
tains multiple randomized histograms to obtain additional
views of network traffic; and (ii) uses the Kullback-Leibler
(KL) distance to detect anomalies. Each histogram detector
monitors a flow feature distribution, like the distribution
of source ports or destination IP addresses. We assumen
histogram-based detectors that correspond ton different traffic
features and havem histogram bins. Histogram cloning pro-
vides alternative ways to bin feature values. Classical binning
groups adjacent feature values,e.g.,adjacent source ports or IP
addresses. A histogram clone withm bins uses a hash function
to randomly place each traffic feature value into a bin. Each
histogram-based detectorj = 1 . . . n usesk histogram clones
with independent hash functions1.

During time intervalt, an anomaly detection module con-
structs histogram clones for different traffic features. Atthe
end of each interval, it computes for each clone the KL
distance between the distribution of the current interval and a
reference distribution. The KL distance has been successfully
applied for anomaly detection in previous work [10], [20]. It
measures the similarity of a given discrete distributionq to a
reference distributionp and is defined as

D(p||q) =

m
∑

i=0

pi log (pi/qi)

1Note that histogram cloning uses random projections as theyare commonly
used in sketch data structures that have been proposed in theliterature.
Sketches aim at summarizing a data stream in a compact data structure, which
can be used for answering various queries. In contrast, histogram cloning is
a method to randomly bin histograms that does not target summarization. As
we discuss in the related work section, similar methods havebeen proposed
in the literature [8], [16].
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Fig. 4. Upper plot: KL distance time series for the source IP address feature
for roughly two days. Lower plot: First difference of the KL distance for the
same period. The dashed line corresponds to the anomaly detection threshold.

Coinciding distributions have a KL distance of zero, while
deviations in the distribution cause larger KL distance values.
In general, the KL distance is asymmetricD(p||q) 6= D(q||p).

Instead of training and recalibrating distributions that repre-
sent normal behavior, we use the distribution from the previous
measurement interval as reference distributionp. Hence, we
will observe a spike in the KL distance time series each time
the distribution changes. Assuming an anomalous event that
spans multiple intervals, the KL distance will generate spikes
at the beginning and at the end of an anomalous event. On the
other hand, changes in the total number of flows that do not
have an impact on the distribution will not result in large KL
distance values. The KL distance time series for the source IP
address feature over roughly two days is depicted in Figure 4
in the upper plot.

We have observed that the first difference of the KL distance
time series is approximately normally distributed with zero
mean and standard deviationσ. This observation enables
to derive a robust estimate, the median absolute deviation,
of the standard deviation̂σ and of the anomaly detection
threshold3 σ̂ from a limited number of training intervals. We
generate an alert when

∆t D(p||q) ≥ 3 σ̂

In Figure 4, we show the∆t D(p||q) time series for the
source IP address feature and the corresponding threshold.
An alarm is only generated for positive spikes crossing the
threshold, since they correspond to significant increases in the
KL distance.

If we detect an anomaly during intervalt we need to identify
the setBk of affected histogram bins and the corresponding
set Vk of feature values that hash into the affected bins.
The setVk is then used to determine meta-data for filtering
suspicious flows.

To find the contributing histogram bins for each clone,
we use an iterative algorithm that simulates the removal of
suspicious flows until∆t D(p||q) falls below the detection
threshold. In each round the algorithm selects the bini with



4

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Round

K
L 

di
st

an
ce

Fig. 5. This Figure illustrates our incremental method for determining the
anomalous bins. The KL distance converges to zero as in each round the
bin with the largest absolute difference is aligned with itscounterpart in the
reference distribution. Already after the first round the KLdistance decreases
significantly.

the largest absolute distancemaxi∈[0,m] |pi − qi| between the
histogram of the previous and current interval. The removal
of flows falling into bini is simulated by setting the bin count
in the current histogram equal to its value in the previous
interval (qi = pi). The iterative process continues until the
current histogram does not generate an alert any more. This
procedure is illustrated in Figure 5, where we plot the KL
distance computed in each round. Already after the first round,
the KL distance decreases significantly. Having identified the
set of anomalous histogram binsBk for each clone, we obtain
the corresponding set of feature valuesVk by keeping a map
between values and corresponding bins.

C. Voting and Meta-data Generation

The cardinality ofVk is typically much larger than the
cardinality of Bk, e.g., the 65’000 unique port numbers are
distributed evenly over 1024 bins if we use a 10-bit hash func-
tion for randomization. Therefore the set of feature valuesVk

provided by each clone is likely to contain normal feature
values colliding on anomalous bins. Usingk clones a normal
feature value has a small probability of(1/m)k to appear in
an anomalous bin in allk clones.

In our previous work [3], we keep feature values that have
been identified by all histogram clonesMj =

⋂

k Vk in order
to minimize false positives. We generalize this approach to
a more flexible scheme that is based on voting. In particular,
voting keeps a feature value if it has been selected by at least l
out of k clones. With this approach the trade-off between false
positives and false negatives can be adjusted via the parameters
k and l.

Let’s assume that each of thek clones has detected a
disruption in the distribution of featurej in interval t, and
has identifiedb responsible bins. Each clone includes an
anomalous feature value in the setVk with probability pa,
while a normal feature value is selected only if it collides on
one of the selected bins, and has thus a selection probability
of pn = b/m wherem is the total number of bins.

If an anomalous value is included by one clone it is likely
that it will also be included by the other clones as these events
are not independent. Consequently, we can derive a lower

bound for the probability that an anomalous feature value is
included by more thanl out of k clones

Pa ≥

k
∑

i=l

(

k

i

)

pi
a (1 − pa)k−i (1)

and an upper bound for the probability that an anomalous
feature value is missed

Pā ≤ 1 − Pa (2)

The probability that a normal feature value is included by more
thank clones, on the other hand, is given by

Pn =

k
∑

i=l

(

k

i

)

(pn)i (1 − pn)k−i (3)

Here we do not derive a bound since the considered events
are not correlated.

To sum up, the meta-dataMj for featurej obtained after the
voting process contain feature values representing normaland
anomalous traffic. The ratio between the two classes depends
on the parametersk and l, on the initial probabilitypa, and
the hash function lengthm.

D. Flow Pre-filtering

In the pre-filtering step we select all flows in time interval
t that match theunion of the meta-data provided byn
detectors,i.e.,all flows that match∪Mj wherej = 1, ..., n are
filtered. Pre-filtering usually removes a large part of the normal
traffic. This is desirable for two reasons. Firstly, it generates
a substantially smaller dataset that results in faster processing
in the following steps and secondly it improves the accuracy
of association rule mining by removing flows that might cause
false positive item-sets.

E. Association Rule Mining

Association rules describe items that occur frequently to-
gether in a dataset and are widely-used for market basket anal-
ysis. For example, a rule might reflect that 98% of customers
that purchase tires also get automotive services [1]. Formally,
let a transactionT be a set ofh items T = {e1, . . . , eh}.
Then the disjoint subsetsX, Y ⊂ I define an association rule
X =⇒ Y . The supports of an association rule is equal to the
number of transactions that containX ∪ Y .

The problem of discovering all association rules in a dataset
can be decomposed into two subproblems: (i) discover the
frequent item-sets,i.e., all item-sets that have a support above
a user-specified minimum support; and (ii) derive association
rules from the frequent item-sets.

Our motivation for applying association rules to the anomaly
extraction problem is that anomalies typically result in a large
number of flows with similar characteristics,e.g.,IP addresses,
port numbers, or flow lengths, since they have a common root-
cause like a network failure, a bot engine, or a scripted Denial
of Service (DoS) attack. Each transactionT corresponds to a
NetFlow record and the itemsei to the following seven (h = 7)
flow features: srcIP, dstIP, srcPort, dstPort, protocol, #packets,
#bytes. For example, the iteme1 = {srcPort : 80} refers to
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l srcIP dstIP srcPort dstPort #packets #bytes support what
1 * * * * 2 * 10,407
1 * * * 25 * * 22,659
2 Host A * * 80 * * 11,800 HTTP Proxy
2 * * * 80 6 * 35,475
2 Host B * * 80 * * 14,477 HTTP Proxy
2 * * * 80 7 * 16,653
2 Host C * * 80 * * 15,230 HTTP Cache
2 * * * 80 5 * 58,304
3 * * * 80 1 46 17,212
3 * * * 80 1 48 11,833
3 * * * 80 1 1024 23,696
3 * * * 7000 1 48 12,672 Dist. Flooding
4 * Host D * 9022 1 48 22,573 Backscatter
5 * Host E 54545 7000 1 46 23,799 Dist. Flooding
5 * Host E 45454 7000 1 46 15,627 Dist. Flooding

TABLE II
FREQUENT ITEM-SETS COMPUTED WITH OUR MODIFIEDAPRIORI ALGORITHM. THE INPUT DATA SET CONTAINED350,872FLOWS AND THE MINIMUM

SUPPORT PARAMETER WAS SET TO10,000FLOWS. IP ADDRESSES HAVE BEEN ANONYMIZED.

a source port number equal to 80, whilee2 = {dstPort : 80}
refers to a destination port number equal to 80. Anl-item-set
X = {e1, . . . , el} is a combination ofl different items. The
largest possible item-set is a7-item-set that contains a feature-
value pair for each of the seven features. A transaction or an
l-item-set cannot have two items of the same feature,e.g.,
X = {dstPort : 80, dstPort : 135} is not valid. The support
of an l-item-set is given by the number of flows that match
all l items in the set. For example, the support of the2-item-set
X = {dstIP : 129.132.1.1, dstPort : 80} is the number of
flows that have the given destination IP address and the given
destination port.

Apriori Algorithm The standard algorithm for discovering
frequent item-sets is the Apriori algorithm by Agrawal and
Srikant [1]. Apriori makes at mosth passes over the data.
In each roundl = 1 . . . h, it computes the support for all
candidatel-item-sets. At the end of the round, the frequentl-
item-sets are selected, which are thel-item-sets with frequency
above the minimum support parameter. The frequent item-sets
of round l are used in the next round to construct candidate
(l+1)-item-sets. The algorithm stops when no(l+1)-item-sets
with frequency above the minimum support are found.

By default, Apriori outputs all frequentl-item-sets that it
finds. We modify this to output onlyl-item-sets that are not a
subset of a more specific(l +1)-item-set. More specific item-
sets are desirable since they include more information about
a possible anomaly. This measure allows us to significantly
reduce the number of item-sets to process by a human expert.
We denote the final set ofl-item-sets asI. The Apriori
algorithm takes one parameter,i.e., the minimum support, as
input. If the minimum support is selected too small, many
item-sets representing normal flows (false positives) willbe
included in the output. On the other hand, if the minimum
support is selected too large, the item-sets representing the
anomalous flows might be missed (false negative).

Apriori Example In the following we give an example
of using Apriori to extract anomalies. In the used 15-minute
trace, destination port 7000 was the only feature value that
was flagged by all histogram clones. It contributed 53,467
candidate anomalous flows. To make the problem of extracting

anomalies more challenging, we manually added to the can-
didate set∪Fj flows that had one of the three most frequent
destination ports but had not been flagged by all histogram
clones. In particular, the most popular destination ports were
port 80 that matched 252,069 flows, port 9022 that matched
22,667 flows, and port 25 that matched 22,659 flows. Thus,
in total the input set∪Fj contained 350,872 flows. For our
example, we set the minimum support parameter to 10,000
flows and applied our modified Apriori to the flow set∪Fj .

The final output of the algorithm is given in Table II, which
lists a total of 15 frequent item-sets. In the first iteration,
a total of 60 frequent 1-item-sets were found. 59 of these
were, however, removed from the output as subsets of at least
one frequent 2-item-set. In the second iteration, a total of78
frequent 2-item-sets were found. Again, 72 2-item-sets could
be removed since they were subsets of frequent 3-item-sets.
In the third iteration, 41 frequent 3-item-sets were found,of
which four item-sets were not deleted from the output. In
the fourth round, 10 frequent 4-item-sets were found but only
one of them remained after removal of redundant 4-item-sets.
Two frequent 5-item-sets were found in round five. Finally,
the algorithm terminated as no frequent 6-item-sets satisfying
the minimum support were found.

Three out of the 15 frequent item-sets had destination port
7000. We verified that indeed several compromised hosts were
flooding the victim host E on destination port 7000. Regarding
the other frequent item-sets, we verified that hosts A, B, andC,
which sent a lot of traffic on destination port 80, were HTTP
proxies or caches. The traffic on destination port 9022 was
backscatter since each flow has a different source IP address
and a random source port number. The remaining item-sets
refer to combinations of common destination ports and flow
sizes and are thus not likely of anomalous nature. These item-
sets can be easily filtered out by an administrator.

F. Parameter Estimation

The various parameters associated with our approach, and
their range as used in the evaluation of this work, are sum-
marized in Table III. Although most of the parameters are
associated with the detection part of our approach, they also
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Parameter Description Range
n Number of detectors 5
w Interval length [5,10,15] min
m Hash function length [512,1024,2048]
k Number of clones 1-50
l Voting parameter 1-k
s Minimum support 3,000-10,000 flows

TABLE III
PARAMETERS INCLUDING DESCRIPTION AND RANGE AS USED IN THE

EVALUATION SECTION OF THIS WORK.

have an impact on the extraction part. In the following we
describe each parameter in detail and provide criteria for
selecting the correct parameter settings.

Number of detectors n: As the number of detectors
increases further information can be exploited for identifying
anomalies and therefore a largen is generally desired. In this
work we use five detectors, where each detector monitors one
of the following features: source IP address, destination IP
address, source port number, destination port number, number
of packets per flow. Other features that might be useful for
anomaly detection purposes are the number of packets per
flow, the average packet size, or the flow duration.

Interval length w: The interval lengthw determines the
detectable anomaly scale,i.e., it becomes harder to detect
short disruptions that contain only few flows with longer
intervals. On the other hand, it is not always desirable to detect
such short disruptions. Hence, the desired number of daily
or weekly anomalous alarms can be used to set the interval
lengthw. The desired number of alarms depends on the avail-
able human resources for investigating alarms. Some studies
report that actionable alarms require on average 60 minutes
investigation time [19], which would correspond to 8 alarms
per day assuming a full-time employ for analyzing alarms.
Another issue related to the interval length is the detection
delay as an anomaly can only be detected at the end of a
given interval. Typically used intervals correspond to delays of
few minutes, e.g., 5 to 15 minutes. However, a sliding window
mechanism can shorten this delay. Finally, one last implication
is that a largerw results in more flows to be processed by
association rule mining and in higher computational overhead.
Nevertheless, the overhead of association rule mining is low
as we discuss in the next section.

Hash function length m: The hash function lengthm
is also involved in a detection sensitivity versus aggregation
trade-off we discussed for parameterw. The smaller the
hash function length the more flows are aggregated per hash
function bin. In addition, a largerm is desired for anomaly
extraction as it decreases the probabilityPn that a normal
feature value remains in the meta-data after voting and, thus,
the number of candidate flows for rule mining. Finally, the
parameter also affects the required memory resources. As-
suming that the available memory resources do not drive the
choice ofm, then an acceptable range of values can be first
determined via simulation using Equation 3 and a target range
for Pn. Then,m should be selected together withw based on a
desired number of daily/weekly anomalous alarms. Among the
possible (m, w) choices realizing a desired number of alarms,

the solutions with largerm, i.e., smaller bins, are preferable
for anomaly extraction.

Voting parameters l and k: The parameterk determines
the total number of histogram clones used. The computational
requirements in terms of memory and CPU scale linearly with
k. Moreover, the parameterk has an impact on the probability
that a feature value remains in the meta-data after voting and
thus on accuracy. The parameterl determines the lower bound
for the number of clones that need to select a feature value for
it to be included in the final meta-data. Therefore,l can vary
between 1, corresponding to the union, andk, representing the
intersection. Just likek, the parameterl impacts the number
of flows selected in the pre-filtering step and thus the accuracy
of our approach. The parameter settings forl andk can also
be obtained by simulation using Equation 1 and 3. Simulation
results forPā andPn for different settings ofl andk will be
presented in the evaluation section.

Minimum support s: The parameters determines the
frequency threshold above which an item-set is extracted by
Apriori as a possible set of anomalous flows. A larges extracts
no or few item-sets, which in our experiments were almost
always associated with anomalous events. On the other hand,
decreasings results in more item-sets and in a small but
higher rate of false positives. By progressively decreasing s
the administrator can create a rank of suspecious item-sets
in decreasing order of confidence. Therefore, the parameters
does not require any special calibration but is manipulated
by the administrator to progressively extract and analyze
additional item-sets. The parameters is set by the user in
an iterated fashion. One starts off with a larger value and
decreasess in each round until sufficient anomalous flow-sets
have been investigated.

In summary, the parametersn and s are the simplest asn
should generally be large involving additional useful features
and s should be varied by the user to investigate different
anomalies. The parametersw andm are mainly involved in a
detection sensitivity versus aggregation trade-off. Thistrade-
off should be settled based on the average number of daily
or weekly anomalous alarms. Having set this trade-off, thena
largem, i.e., smaller bins, is desired for anomaly extraction,
which should be balanced by a largerw, i.e., 15 minutes in
our experiments, to achieve sufficient aggregation. Finally, the
parametersl andk serve to balance the number of false and
true positives produced by pre-filtering. A range of acceptable
values can be determined by simulations using the discussed
analytical models.

III. E VALUATION

In this section we first describe the traces we used for
our experiments and then evaluate each step of our approach
for different parameter settings. In particular, we evaluate
the accuracy of our approach, as well as the reduction in
classification cost, in terms of flows or item-sets.

A. Data Set and Ground Truth

To validate our approach we used a Netflow trace com-
ing from one of the peering links of a medium-sized ISP
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Anomaly class Occurrences Mean #flows
Flooding 5 163’139
Backscatter 5 85’716
Network Experiment 3 27’606
DDoS 5 132’509
Scanning 16 96’375
Spam 1 33’765
Unknown 1 23’360
Total 36 99’688

TABLE IV
IDENTIFIED ANOMALIES IN TWO WEEKS OFNETFLOW DATA SEPARATED

BY ANOMALY CLASS . FOR EACH CLASS WE GIVE THE NUMBER OF

OCCURRENCES AND THE AVERAGE NUMBER OF FLOWS CAUSED BY THIS

CLASS OF ANOMALY.

(SWITCH/AS559). SWITCH is a backbone operator con-
necting all Swiss universities and various research labs,e.g.,
CERN, IBM, PSI, to the Internet. We have been collecting
non-sampled and non-anonymized NetFlow traces from the
peering links of SWITCH since 2003. The SWITCH IP
address range contains approximately 2.2 million IP addresses.
On average we see 92 million flows and 220 million packets
per hour crossing the peering link we used for our experiments.
The dataset used for this study was recorded during December
2007 and spans two continuous weeks.

To generate datasets for evaluating the Apriori algorithm,
we computed the KL distance timeseries for the two weeks of
data for the following feature distributions: source IP address,
destination IP address, source port number, destination port
number, and flow size in packets. We manually identified 31
anomalous intervals by visual inspection and top-k queries
on the data. To determine the root cause of each anomaly,
we extracted all flows in an anomalous interval and analyzed
the timeseries and distribution of the five features, the the
number of packets and bytes per flow, the flow inter-arrival
times, and the flow durations. We found a total of 36 different
events within the 31 the anomalous intervals. The identified
anomalies, their class, and the average number of flows per
class are listed in Table IV.

Subsequently, we computed the set of candidate anomalous
flows ∪Fj for each anomalous interval using our modified
Apriori algorithm. After applying Apriori, we manually ana-
lyzed the found frequent item-sets and identified true positives,
which matched the identified events, and false positives, which
matched benign traffic.

B. Accuracy of Histogram Clones

As a first step we evaluated thedetection accuracyof our
histogram-based detector for different values of the interval
length w and the hash function lengthm. We found small
differences in the detection results form equal to 512, 1024,
and 2048. We also found that the number of detections
decreases with the interval lengthw. In particular, settingm
to 1024 andw to 5, 10, and 15 minutes, we detected 62,
52, and 31 anomalous intervals, respectively. Based on these
number and the parameter selection guidelines we analyzed
in Section II-F, we setw conservatively to 15 minutes, which
corresponds to 2.2 alarms per day, andm to 1024.
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Fig. 6. ROC curves plotting the false positive rate versus the true positive rate
for different thresholds. The three curves correspond to different histogram
clones.

To assess the detection accuracy, we used ROC curve
analysis. We computed the number of false positives,i.e.,
intervals that have an alarm but are not in the ground truth set,
and true positives,i.e., intervals that are in the ground truth
set and have an alarm. A ROC curve plots the false positive
rate (FPR), the ratio between the number of false positives
and the total number of intervals that are not in the ground
truth set versus the true positive rate (TPR), the ratio between
the number of true positives and the total number of intervals
with an alarm. Different points in the ROC space are obtained
by varying the detection threshold.

In Figure 6 we plot ROC curves for three histogram clones,
i.e.,using three different hash functions. A detection rate of 0.8
corresponds to a false positive rate of 0.03, while a detection
rate of 1 (100%) to a false positive rate between 0.05 and
0.08 for different clones. With a false positive rate as low as
0.01 only 40% of the anomalies are detected. These results
are a lower bound on the performance of our detector. This
is because some of the false-positive intervals might contain
unknown anomalous traffic.

C. Impact of Voting

After the correct interval has been determined, each clone
selectsb histogram bins that are suspected to contain anoma-
lous flows. The number of responsible bins is determined
by the detection threshold and the nature of the anomaly,
i.e., whether it is distributed over many feature values or
concentrated on a single or few feature values. The probability
pa that a clone correctly identifies an anomalous feature value
is equal to the probability that an anomalous feature value has
caused the disruption in the histogram, and that the disruption
in the respective interval has been detected.

We analyze the impact of voting using simulations. Each
clone includes an anomalous feature value in the setVk with
probability pa, while a normal feature value is selected only
if it collides on one of the selected bins with probability
pn = b/m. For simulating the impact of different voting
strategies on the error probabilities according to Equation 1
and 3, we setpa = 0.8, corresponding to a false positive rate
of approximately 0.03 (m = 1024) and variedb in the range
[1, 25].

In Figure 7 the upper bound for the probabilityPā that
an anomalous feature value is missed is plotted for different
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Fig. 7. Upper bound for the probabilityPā that an anomalous feature value
is eliminated by voting for different values ofl andk in logarithmic scale. The
results forl = 5, l = 10 are marked for better readability. For a given value
of k, Pā increases withl, e.g., for l = 5, k = 10 we obtainPā = 0.006

while for l = 10, k = 10 the probability increases toPā = 0.89.

values ofl andk in logarithmic scale. The results forl = 5,
l = 10 are marked for better readability. For a given value of
k, Pā increases withl, e.g., for l = 5 andk = 10 we obtain
Pā = 0.006, while for l = 10 and k = 10 the probability
increases toPā = 0.89. Consequently, the upper bound for a
fixed number of histogram clonesk increases with the number
of clonesl that are required to agree on a feature value. In
particular, it has its minimum forl = 1, which corresponds to
the union, and is maximized forl = k, which corresponds to
the intersection.
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Fig. 8. ProbabilityPn that a normal feature value is not eliminated by voting
for different values ofl andk in logarithmic scale. The number of anomalous
bins is b = 1 (upper plot) andb = 25 (lower plot) and the number of total
bins ism = 1024.

In Figure 8(a) and Figure 8(b) we plot the probabilityPn

that a normal feature value is not eliminated by voting for

different values ofl and k in logarithmic scale. The number
of selected bins isb = 1 and b = 25, respectively. The
number of total bins ism = 1024 for both plots. The results
for l = 1, l = 5 are marked for better readability. For a
given value ofk, Pn decreases withl, e.g., for l = 1 and
k = 10 the probability for including a normal feature value is
Pn = 10−2 for b = 1 and Pn = 0.22 for b = 25. For l = 5
andk = 10 the probability decreases toPn = 10−13 for b = 1
and toPn = 10−6 for b = 25. Moreover, we observe that the
probability of including a normal feature value in the meta-
data increases dramatically with the number of anomalous
bins b. Consequently, assuming a fixed setting of the voting
parameters we have to tolerate higher false positive rates for
anomalies affecting multiple bins,e.g.,distributed anomalies.
Alternatively, the parameterl could be adapted based on the
estimated number of binsb to achieve a target probabilityPn.
The average number of false positive feature values can be
determined by multiplication ofPn with the average number
of feature values observed within one interval,e.g.,between
one and 65’536 for port numbers.

The simulation results show that a variety of operating
points [Pā, Pn] can be achieved by setting the voting param-
etersl, k appropriately. In order to determine the parameters
that provide the best overall performance, in terms of accuracy
and computational overhead, the following rule mining step
needs to be taken into account. The essential questions to
answer are i) how is the accuracy impacted by the number of
normal feature values included in the meta-data that is used
for pre-filtering the candidate flows, and ii) how does the rule
mining performance decrease with the number of candidate
flows.

D. Accuracy of Rule Mining

After the meta-data has been identified by voting, the
corresponding flows are filtered and subsequently send to
the rule mining process. The accuracy in terms of correctly
identified item-sets depends on three parameters: the accuracy
of the meta-data used for per-filtering flows, the frequency of
the pre-filtered normal and anomalous flows, and the minimum
support parameters.

An interesting question concerning the accuracy of meta-
data is: What is the probability that a normal value in the meta-
data results in a false positive item-set. Recall that an item-set
will be generated if more thans flows matching the meta-data
have one (1-item-set) or more (l-item-set) common feature
values. We have observed that the probability for generating
a false positive item-set from a normal feature value is highly
skewed. For example, if port number 80 is included in the
meta-data it is likely that webservers with high load will
appear as false positive 2-item-sets in the output of Apriori.
Nevertheless, they will be easy to identify as such. On the
other hand, if other less frequent port numbers are chosen,
few flows will match the feature value and no false positive
item-set will be generated.

To further study the rule mining accuracy, we used the flow
data of the 31 anomalous intervals. To generate the input data
sets for Apriori, we setk to 3, l to 3, andm to 1024. This
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Fig. 9. Number of false positive (FP) item-sets generated byApriori
for different minimum support parameter values for 10 anomalous intervals
(30%). For 21 anomalous intervals (70%) we obtain no FP item-sets at all.
The average FP item-set count over all 31 anomalous intervals is marked with
squares.

corresponds toPā =0.488 andPn = 10−4 for b = 25. Despite
the large value forPā none of the 31 anomalies were missed.
This illustrates the fact thatPā is an upper bound that was
derived under the assumption of independence between clones.
On the other hand, asPn is very low, only few normal feature
values are included in the meta-data.

For 21 anomalous intervals (70%) we obtained no FP item-
sets at all. The number of FP item-sets for the remaining
10 anomalous intervals is plotted in Figure 9 together with
the average number of FP item-sets over all 31 anomalous
intervals (marked with squares). The number of FP item-sets
decreases with the minimum support since less FP item-sets
satisfy the minimum support condition. Figure 9 shows that
on average between 2 and 8.5 FP item-sets are generated for
minimum support values between 3,000 and 10,000 flows,
respectively. The top three lines in the figure correspond to
anomalies with higher numbers of FP item-sets. The observed
FP item-sets are exclusively caused byanomalousheavy-
hitter feature values such as common ports,e.g.,port 80, or
short flow lengths. Hence, if an anomaly happens to involve
such a heavy-hitter feature value the number of FP item-sets
automatically increases even if nonormal feature values are
included in the meta-data. However, most of the FP item-sets
can be sorted out rather easily by a network administrator.

An important question is which types of anomalies are
captured with our rule mining approach. There are two require-
ments for extracting an anomaly. The anomaly should: i) be
detected by causing a deviation in a traffic feature distribution
and ii) trigger a large number of flows with similar character-
istics. For many anomalies that originate from or terminateto
a single or few IP addresses these requirements are met. Scan-
ning, flooding, and spamming activity, (distributed) Denial of
Service attacks as well as related backscatter fall into this
category. Although the rule mining approach is not targeted
at botnet detection, anomalous activities such as spamming,
scanning or flooding are often caused by compromised hosts.
Other anomalies may not be concentrated on a single or
few IP addresses like network outages, routing anomalies,
or distributed scanning. Distributed scanning activity typically
has a common destination port and often a fixed flow length.
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Fig. 10. Average decrease in classification cost vs. minimumsupport.

Therefore, it will appear as a frequent item-set. Anomalies
that affect certain network ranges, such as outages or routing
anomalies can be either captured by using IP address prefixes
as additional dimensions for rule mining, or by applying
concepts from the hierarchical heavy-hitter detection domain
[6].

E. Computational Overhead of Rule Mining

The exact computational overhead of Apriori depends
highly on the implementation used. Progressive implementa-
tions that use FP-trees and database partition techniques [13]
have been shown to outperform standard hash tree implemen-
tations [1]. Nevertheless, for all implementations the computa-
tional overhead increases with the number of transactions and
the number of frequent 1-item-sets. Since both, the number of
transactions and the number of frequent 1-item-sets increase
as more normal flows are included in the input data set, the
performance of Apriori will decrease with the size of the input
data set,e.g.,when we lower the threshold of the histogram-
based detectors or do not use the meta-data at all. Moreover,
some implementations show considerably longer computation
times as the relative minimum support decreases [13], which
is equivalent to increasing the data set size and keeping the
absolute minimum support constant. In our experiments using
a non-optimized implementation in Python, the computation
overhead was small requiring few seconds up to minutes in
the worst case.

F. Decrease in Classification Cost

Using association rules we obtain a summarized view
that is based on frequent item-sets instead of flows. As
a consequence, the problem of manually classifying flows
can be reduced to the problem of classifying item-sets. To
quantify this decrease in classification cost, we assume that the
classification cost is a linear function of the number of items
that need to be classified. Accordingly, we define the reduction
in classification costr for a given dataset asr = |F |/|I|
where|F | denotes the number of flows in the flagged interval
and |I| the number of item-sets in the output of Apriori.
The number of flows in 15-minute intervals ranges between
700,000 and 2.6 million flows. Since the cardinality ofI
depends on the minimum support parameter, we plot in Fig.
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10 the reduction in classification cost for different valuesof
the minimum support parameter. The average cost reduction
increases with the minimum support and ranges between
600, 000 and800, 000. The cost reduction saturates for larger
minimum support parameters as the minimum number of item-
sets is reached. This result illustrates that association rule
mining can greatly simplify root-cause analysis and attack
mitigation.

IV. RELATED WORK

Substantial work has focused on dimensionality reduction
for anomaly detection in backbone networks [2], [22], [24],
[15], [10], [4], [12]. These papers investigate techniquesand
appropriate metrics for detecting traffic anomalies, but donot
focus on the anomaly extraction problem we address in this
paper.

Closer to our work, Dewaeleet al. [8] use sketches to create
multiple random projections of a traffic trace, then model the
marginals of the sub-traces using Gamma laws and identify
deviations in the parameters of the models as anomalies. In
addition, their method finds anomalous source or destination
IP addresses by taking the flows matching the intersection of
the addresses hashing into anomalous sub-traces. DoWitcher
[21] is a scalable system for worm detection and containment
in backbone networks. Part of the system automatically con-
structs a flow-filter mask from the intersection of suspicious
attributes provided by different detectors. Liet al. [16] use
sketches to randomly aggregate flows as an alternative to
origin-destination (OD) aggregation. They show that random
aggregation can detect more anomalies than OD aggregation in
the PCA subspace anomaly detection method [15]. In addition,
the authors describe that their method can be used for anomaly
extraction, however, the work primarily focuses on anomaly
detection.

Association rules have been successfully applied to different
problems in networking. Chandola and Kumar [5] use clus-
tering and heuristics to find a minimal set of frequent item-
sets that summarizes a large set of flow records. Mahoney
and Chan [17] use association rule mining to find rare events
that are suspected to represent anomalies in packet payload
data. They evaluate their method on the 1999 DARPA/Lincoln
Laboratory traces [18]. Their approach targets edge networks
where mining rare events is possible. In massive backbone
data, however, this approach is less promising. Another ap-
plication of rule mining in edge networks is eXpose [11],
which learns fine-grained communication rules by exploiting
the temporal correlation between flows within very short time
windows.

Hierarchical heavy-hitter detection methods [9], [25], [6]
group traffic into hierarchical clusters of high resource con-
sumption. For example, they have been used to identify
clusters of Web servers in hosting farms. Our focus is different
as we are interested in extracting anomalous traffic flows.

V. CONCLUSION

In this paper, we have studied the problem of anomaly
extraction that is of uttermost importance to several appli-
cations such as root-cause analysis, anomaly mitigation, and

detector testing. We presented a histogram-based detectorthat
provides fine-grained meta-data for filtering suspect flows.
Further, we introduced a method for extracting and summa-
rizing anomalous flows. Our method models flows as item-
sets and mines frequent subsets. It finds large sets of flows
with identical values in one or more features. Using datasets
from a backbone network we showed that rule mining is
very effective, extracting in all studied cases the involved
event flows and triggering a low nuumber of false positives
in certain cases that could be trivially sorted out. Though we
have tested our method with a specific detector, the presented
anomaly extraction approach is generic and can be used with
other detectors providing useful meta-data about identified
anomalies.
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