(S)LOC Count Evolution for Selected OSS Projects

Tik Report 315

Arno Wagner
arno@wagner.name

December 11, 2009

Abstract

We measure the dynamics in project code size for several large open
source projects, given as lines of code. Lines of codes are counted using
two different methods. First, raw LOCs, which count every line in the
decompressed source distribution package and second, SLOCs, as defined
by David A. Wheeler’s 'SLOCCount’. It turns out that the results are
substantially different but show similar trends in many cases. A primary
result is that most projects have had steadily increasing code size, with
the associated increased project complexity. We also briefly discuss the
relevance of LOCs in comparison to other code complexity measures.

1 Introduction

Software complexity metrics are an important factor in many investigations.
They are used for cost and time estimation in project planning, for the estima-
tion on how many coding errors (bugs) and vulnerabilities are to be expected
in a project.

There are numerous metrics in use and even a simple measure such as "lines
of code” (LOCs) is used in vastly different flavours. Our goal is to measure the
LOC-based complexity of several open source projects over a longer period of
time with exactly defined and documented metrics. For this we use two popular
counting methods, namely raw LOCs and SLOCs. While these measures have
limited applicability when comparing two different projects, they seem well
suited to document the evolution of a single project over time. This report is
structured as follows: In Section 2 we define and compare the two different LOC
measurements we are using and compare LOCs to other complexity measures.
Section 3 presents the measurement results for four large open source projects,
spanning a time period of up to 10 years. The remainder of the report surveys
related work and gives concluding remarks. The exact numerical LOC counts
found are documented in the appendix.

2 Lines of Code: Definition and Properties
2.1 Raw LOCs vs SLOCs

Raw LOCs are derived in the simplest possible manner, namely by taking the
whole source distribution package of a project and counting every line ending in
it. This is typically done by using the Unix command "wc” on the decompressed
tar file. While this measure seems overly simplistic, it is used in practice.

SLOCs [13] were defined by David A. Wheeler in order to get a more real-
istic line measurement. They are measured with the tool sloccount. Primary
improvements are duplicate detection, separation of the results into different
programming languages and identification of documentation in file-embedded
as well as separate file format. Note that some people use SLOC as a synonym
for LOC. In this report, SLOC always means SLOC as defined by Wheeler.

Naturally, raw LOC counts will be higher than SLOC counts. There is a
tendency that whenever the sheer size of a project is stressed, raw LOCs are
used, e.g. in Table 4 of [10]. We believe that this is the wrong approach. Es-
pecially for documentation-heavy projects or when documentation is suddenly
included in the source distribution package to a far larger degree than before,
raw LOC counts distort the actual project evolution. Our measurements show
that in some cases project complexity measures based on raw LOCs can be
quite different from those based on SLOCs. The problem is made worse by our
observation that many publicly stated LOC counts are missing a description on
how they were obtained. Still, our measurement shows that for 3 out of 4 cases
we examined, raw LOGCs actually closely follow the same trends as SLOCs over
the project duration. The one deviation (Apache) is likely due to a change in
the documentation style and inclusion in the source distribution package.

One factor SLOC cannot account for is code compactness. Due to different
coding styles code with the same functionality and inherent complexity can be
distributed over a larger or smaller number of lines. If a project has a style guide
that is followed by the developers this variation can be reduced between different
developers. This makes LOC counts a good tool to estimate project evolution
over time. Comparing LOC counts of different projects is still problematic.

A second source of different LOC counts for similar functionality can be
dues to use of different programming languages. For example things that can
be expressed in Perl in very few lines may take hundreds of lines of code in C.
Comparisons between different languages based on LOC counts are therefore
highly problematic and should be avoided.

2.2 LOC Derived Complexity Measures

To infer actual complexity, LOC counts are often used as input into more com-
plex models. One such model is the the Constructive Cost Model (COCOMO)
[6] by Barry W. Boehm. The basic COCOMO estimates overall project effort
E as

E[Man-Months] = a % (LOC/1000)"

16 [rawLOC —e—]
14
12+
10 |

Million Lines

o N b O
T

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Figure 1: FreeBSD Code Size

24 rawLOC —e—]
22t

18 r
16
14 ¢
12+

Relative Growth

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Figure 2: FreeBSD Normalized Code Growth

with @ € {2.4...3.6} and b € {1.05...1.2} depending on team experience and
size. The intermediate COCOMO also takes into account other project factors
to modify factor a, while b is left unchanged. The COCOMO has limited
accuracy [9] but is still suitable for rough estimates. Its claim that effort raises
exponentially with the project size is not in doubt. An improved version is the
COCOMO 1I [5, 2|, which also takes aspects like code reuse and project state
into account and offers better accuracy later in the design process.

2.3 Alternatives to LOCs

LOC counts suffer from being a simplistic measure. They do not take structural
complexity into account. An alternative measure is Cyclomatic Complezity [11],
which is based on the number of ”decision points” in the code. Newer research
found empirical evidence of a linear relationship between LOC counts and Cy-
clomatic Complexity [8]. This indicates that the LOC number of a software
project is a significantly more meaningful than its simple nature suggests.

12 | rawLOC e i

10

BeN=ts)
,EHE!"EI"E &
soeeeBsE
4 ¢ mEreaEess -

Million Lines

2 - .

0 Il Il Il Il Il Il L
2004 2005 2006 2007 2008 2009 2010

Figure 3: Linux Kernel Code Size

2.2 T T
raw LOC —e—
2L SLOC ---&--- y |

18 r
16

14

Relative Growth

12+

1+

O i 8 | | | | | | |
2004 2005 2006 2007 2008 2009 2010

Figure 4: Linux Kernel Normalized Code Growth

3 Findings

For each project we give time plots for both raw LOCs and SLOCs in absolute
and normalized form. The normalized forms are then compared in Figures 11
and 12. The exact numerical values are stated in Appendix A. The raw LOC
numbers were obtained by running the Linux wc command on the decompressed
tar archive. Sample tests showed that the results differ very little from those
obtained when completely unpacking the tar archives, running wc on each in-
dividual file and then adding the individual counts. SLOCs were obtained by
running sloccount on the unpacked distribution archive and taking the Total
Physical Source Lines of Code (SLOC) output number. Note that running
several instances of sloccount in parallel requires special attention, see section
3.5.

3.1 FreeBSD

The FreeBSD source packages were obtained from [1]. The packages come
in a broken-down compressed tar format, that contains the complete source
distribution but no binaries. Most of the source code is C. The LOC counts we

0g | rawLOCVL3 —o—]
| rawnLOCVv20 —€—
0.8 Fraw LOCv22 —e— HM.. 1
07 + SLOCv1.3 & b—e@ P |
4] ‘ SLOC V2.0 —<—-- X
S 06| SLOCV22 —4— gff]
'5 05 E
= 04 E
= o3t ;
0.2 E
01 1
O 1
1998 2000 2002 2004 2006 2008 2010
Figure 5: Apache Web Server Code Size
241 rawlLOCvi3 —o—]
SLOCv1l3 8-
22 R
e 2 - i
3
5 18 E
e 16 f
5 14l .
4
12 R
l - .
0.8 Il Il Il Il Il Il

1998 2000 2002 2004 2006 2008 2010
Figure 6: Apache 1.3 Web Server Normalized Code Growth

24| ravLOCv20 —e—]
ol SLOC V2.0 &

5L
18 |
16 |
14}
12 f

1l

o. 8 Il Il Il Il Il Il
1998 2000 2002 2004 2006 2008 2010

Figure 7: Apache 2.0 Web Server Normalized Code Growth

Relative Growth

1.2 T T
raw LOCv2.2 —o—
SLOCv22 —8—
T 11
5 .
O
(]
=
3
g 10 1
0.9 1 1 1 1 1 1

1998 2000 2002 2004 2006 2008 2010
Figure 8: Apache 2.2 Web Server Normalized Code Growth

5

obtained are represented in Figures 1 and 2. They show a steady, near-linear,
increase over time, with an almost constant ratio between raw LOC and SLOC
numbers.

3.2 The Linux Kernel

The kernel packages used are stock kernel sources from kernel.org. We only
measure 2.6.x versions, i.e. the respective initial kernel releases. Measurements
on patched sub-releases are problematic, because they may actually have been
released later than the next initial release kernel and they can contain a smaller
or larger amount of back-ported code from later kernels. We therefore believe
that measurements restricted to initial releases give the most realistic results.

The LOC value plots are given in Figure 3 and 4. Kernel growth accelerated
in 2008. It is too early to see whether this was a temporary phenomenon or
represents a persistent change. As for FreeBSD, raw LOC and SLOC changes
are very similar for the Linux Kernel.

3.3 The Apache Web Server

The Apache sources are from the Apache archive download site at [1]. We did
measurements on versions 1.3.x, 2.0.x and 2.2.x. Note that Apache 2.0.32 is a
beta release and that 2.0.15 is an alpha release. The LOC plots for Apache 1.3,
2.0 and 2.2 are given in in graphical from in Figure 5 for the absolute values
and in Figures 6, 7 and 8 in normalized form.

As the plots clearly show, there is a significant difference in the evolution
of raw LOCs compared to SLOCs for the Apache web server. While the SLOC
counts for all three versions increase slowly initially and then level off, the raw
LOC counts show a much less steady behaviour with a sharp increase for version
2.0 until 2005 and a reduction afterwards, before getting constant. Version 2.2.
has a more steady raw LOC development, but the raw LOC count remains far
higher than the SLOC count.

The most likely explanation for the raw LOC and SLOC differences is that
the amount of documentation shipped with the distribution package was signif-
icantly increased with the development of the 2.0.x Apache versions, and then
kept up with the 2.2.x releases. The example of the Apache web server shows
that raw LOC counts can be quite deceiving with regard to code growth.

3.4 The Firefox Web Browser

The Firefox source packages were obtained from the Mozilla download server
at [3]. The LOC plots are given in Figures 9 and 10. Surprisingly the SLOC
numbers stayed nearly constant for Firefox in the measurement interval. We
can only speculate that this is due to new functionality being implemented in
the form of plug-ins that are not distributed with the browser source package.

2005 2006 2007 2008 2009 2010
Firefox Source Code Size

Million Lines
O F N W M 01 O N
T
1

Figure 9: Firefox Web Browser Code Size

1.5 T T
raw LOC —e—
14 SLOC 8- |

13 1
12
11+

Relative Growth

09 i

2005 2006 2007 2008 2009 2010
Firefox Source Code Size

Figure 10: Firefox Web Browser Normalized Code Growth

3.5 Problems Found During Measurement

sloccount stores temporary data in ${HOME}/.slocdata, but unfortunately
fails to protect this directory against multiple use by two or more sloccount
instances. Running two or more instances of sloccount in parallel results in
random, hard to debug failures and sometimes in grossly wrong results. This
either has to be avoided, or all instances running in parallel have to be given
their own data directories using the -datadir option. It should be noted that
sloccount leaves cleaning up the data directory to the user.

4 Conclusion

4.1 Related Work

Other code size count statistics have been published. For example [4] gives
eLOC count for specific versions of several large Open Source projects. The
authors of [10] use raw LOCs to give the size of the Linux kernel. David A.
Wheeler gives SLOC counts for a complete Linux distribution (Red Hat Linux
7.1, vintage 2001) in [14]. This inspired a number of follow-up measurements

Firefox raw LOC

Apacheraw LOC
oVv1l3
oVv2.0
av2.2

Linux raw LOC

FreeBSD raw LOC

Relative Growth, Each Range: 0.9 - 2.4

1998 2000 2002 2004 2006 2008 2010

Figure 11: Normalized raw LOC Code Growth Comparison

Firefox SLOC

Apache SLOC
oVv1l3
oVv2.0

g 5—Eg ——4
W

Linux SLOC

FreeBSD SLOC

Relative Growth, Each Range: 0.9 - 2.4

1998 2000 2002 2004 2006 2008 2010

Figure 12: Normalized SLOC Code Growth Comparison

of specific versions of OSS projects or distributions, see [12].

The only long-term study of code size dynamics we are aware of is [7], were
the aggregated growth of 5122 OSS projects on SourceForge for the time from
1995 to 2006 was measured in SLOC. It found an overall exponential growth.

4.2 Discussion

Our measurements show a steady increase in size for several large and widely
used open source projects. The exception is the Firefox web browser, that has
a slowly increasing raw LOC size, but an almost constant SLOC code size over
a period of 4 years. A possible explanation is a shift of functionality to plug-ins
that are not distributed directly with the core browser source code. For the
other projects a significant increase in size, and hence code complexity, can be
observed.

We also found that while raw LOC counts can sometimes precisely rep-
resent relative project code growth they are sensitive to inclusion of project
documentation in the source distribution package and can give severely mis-
leading numbers. For this reasons, SLOC or a similar method should be used
to estimate code size and raw LOC counts should be avoided.

References

[1] Apache download archive. http://archive.apache.org/dist/httpd/.

[2] Cocomo ii. http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.
html. Last visited November, 2009.

[3] Morzilla download server. ftp://ftp.mozilla.org/pub/mozilla.org/firefox/
releases/.

[4] RSM Metrics of Popular Software Programs. http://msquaredtechnologies.
com/m2rsm/rsm_software_project_metrics.htm. Last visited November, 2009.

[5] B. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz,
R. Madachy, D. J. Reifer, and B. Steece. Software cost estimation with COCOMO
1I. Prentice-Hall, 2000.

[6] B. W. Boehm. Software engineering economics. Prentice-Hall, 1981.

[7] A. Deshpande and D. Riehle. The Total Growth of Open Source. In Proceedings
of the Fourth Conference on Open Source Systems (0SS 2008). Springer Verlag,
2008.

[8] G. Jay, J. E. Hale, R. K. Smith, D. Hale, N. A. Kraft, and C. Ward. Cyclomatic
complexity and lines of code: empirical evidence of a stable linear relationship.
Journal of Software Engineering and Applications (JSEA), 2009.

[9] C.F. Kemerer. An empirical validation of software cost estimation models. Com-
munications of the ACM, May 1987.

[10] G. Kroah-Hartman, J. Corbet, and A. McPherson. Linux Kernel Develop-
ment, August 2009 update. available from http://www.linuxfoundation.org/
publications, 2009. Published by the Linux Foundation.

[11] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineer-
ing, 1976.

[12] D. A. Wheeler. Counting Source Lines of Code (SLOC). http://www.dwheeler.
com/sloc/. Last visited November, 2009.

[13] D. A. Wheeler. SLOCCount. http://www.dwheeler.com/sloccount/. Last
visited November, 2009.

[14] D. A. Wheeler. More Than a Gigabuck: Estimating GNU/Linux’s Size. http://
www.dwheeler.com/sloc/redhat71-vl/redhat71sloc.html, 2002. Last visited
November, 2009.

10

A Detailed LOC Cou]_’]_ts Version “ Date [raw LOC [SLOC

1.3.0 1998-06-05 137800 | 50712

1.3.1 1998-07-22 140609 | 52139

Version || Date | raw LOC | SLOC | 1.3.2 || 1998-09-21 144393 | 53598
3.1 1999-02-17 | 6425285 | 2983053 1.3.3 || 1998-10-09 145214 | 54000
4.0 2000-03-21 7637813 | 3575773 1.3.4 || 1999-01-10 151376 | 55778
43 2001-04-21 8323520 | 3858150 1.3.6 || 1999-03-23 155565 | 57147
45 2002-01-28 8611733 | 3995585 1.3.9 || 1999-08-19 175888 | 69683
5.0 2003-01-16 | 9808358 | 4320407 1.3.11 || 2000-01-22 186657 | 72370
5.2 2004-01-11 | 10452114 | 4618569 1.3.12 || 2000-02-25 187163 | 72517
5.4 2005-05-08 | 12255382 | 5312235 1.3.14 || 2000-10-10 197723 | 75268
6.0 2005-11-03 | 12545630 | 5498400 1.3.17 || 2001-01-29 204752 | 76128
6.1 2006-05-07 | 12796877 | 5598105 1.3.19 |[2001-02-28 208633 | 75980
6.2 2007-01-12 | 13048819 | 5708606 1.3.20 || 2001-05-15 214979 | 76466
7.0 2008-02-24 | 14431462 | 6343397 1.3.22 || 2001-10-09 239025 | 77893
7.1 2009-01-01 | 14784426 | 6508506 1.3.23 || 2002-01-24 248604 | 78625

1.3.24 || 2002-03-21 246255 | 79830

Table 1: FreeBSD (S)LOC counts 1.3.27 || 2002-10-03 255910 | 80392

1.3.28 || 2003-07-17 264314 | 81089

1.3.29 2003-10-24 268915 | 81137

1.3.31 2004-05-11 276415 | 82149

1.3.32 2004-10-21 276794 | 82314

Version || Date | raw LOC | SLOC | 1.3.33 || 2004-10-28 276632 | 82325
2.6.0 || 2003-12-18 | 5929913 | 3816370 1.3.34 || 2005-10-17 277743 | 82481
2.6.1 || 2004-01-00 | 5919671 | 3797257 1.3.35 || 2006-04-24 279274 | 82607
2.6.2 || 2004-02-04 | 6008957 | 3860620 1.3.36 || 2006-05-17 279450 | 82534
2.6.3 || 2004-02-18 | 6056561 | 3903707 1.3.37 || 2006-07-27 279309 | 82526
2.6.4 || 2004-03-11 | 6105182 | 3935151 1.3.39 || 2007-09-06 280793 | 82923
2.6.5 || 2004-04-04 | 6149724 | 3964541 1.3.41 || 2008-01-17 280329 | 82603
2.6.6 || 2004-05-10 | 6218461 | 4008692
2.6.7 || 2004-06-16 | 6236264 | 4017682 Table 3: Apache 1.3 (S)LOC counts
2.6.8 || 2004-08-14 | 6333645 | 4076622
2.6.0 || 2004-10-18 | 6463002 | 4147093
2.6.10 || 2004-12-24 | 6495542 | 4176375
2.6.11 || 2005-03-02 | 6624076 | 4257157 Version || Date | raw LOC | SLOC
2.6.12 || 2005-06-17 | 6777861 | 4356161 2.0.15 || 2001-03-25 300164 | 123642
2.6.13 || 2005-08-29 | 6988801 | 4496659 2.0.32 || 2002-02-14 467406 | 162540
2.6.14 || 2005-10-28 | 7143234 | 4609589 2.0.35 || 2002-04-06 404125 | 171025
2.6.15 || 2006-01-03 | 7290071 | 4697435 2.0.36 || 2002-05-01 572745 | 167244
2.6.16 || 2006-03-20 | 7480063 | 4818320 2.0.39 || 2002-06-18 541670 | 170972
2.6.17 || 2006-06-18 | 7588015 | 4886152 2.0.40 || 2002-08-09 562212 | 173366
2.6.18 || 2006-00-20 | 7752847 | 4968235 2.0.40 || 2002-08-09 562212 | 173366
2.6.19 || 2006-11-29 | 7976222 | 5111085 2.0.42 || 2002-09-19 588537 | 176743
2.6.20 || 2007-02-04 | 8102534 | 5195239 2.0.43 || 2002-10-03 591149 | 178864
2.6.21 || 2007-04-26 | 8246518 | 5284774 2.0.44 || 2003-01-18 638078 | 181144
2.6.22 || 2007-07-08 | 8499411 | 5445218 2.0.45 || 2003-03-31 660498 | 183073
2.6.23 || 2007-10-09 | 8566607 | 5497052 2.0.46 || 2003-05-28 733980 | 184721
2.6.24 || 2008-01-24 | 8850684 | 5682749 2.0.47 || 2003-07-07 712578 | 184123
2.6.25 || 2008-04-17 | 9232542 | 5913441 2.0.48 || 2003-10-24 730244 | 185183
2.6.26 || 2008-07-13 | 0411791 | 6015867 2.0.49 || 2004-03-18 731918 | 187832
2.6.27 || 2008-10-09 | 9630024 | 6133830 2.0.50 || 2004-06-29 764540 | 188573
2.6.28 || 2008-12-24 | 10115663 | 6450761 2.0.51 || 2004-09-15 763639 | 100487
2.6.20 || 2000-03-23 | 10930803 | 6958954 2.0.52 || 2004-09-28 779206 | 190535
2.6.30 || 2009-06-10 | 11557330 | 7323310 2.0.53 || 2005-02-07 835689 | 102191
2.6.31 || 2009-09-00 | 11966483 | 7581069 2.0.54 || 2005-04-11 842893 | 192540

2.0.55 || 2005-10-10 726140 | 193444
Table 2: Linux Kernel (S)LOC counts 2.0.58 || 2006-04-27 714459 | 194553
2.0.59 || 2006-07-27 715738 | 194266
2.0.61 || 2007-09-06 722264 | 195392
2.0.63 || 2008-01-17 723272 | 195392

Table 4: Apache 2.0 (S)LOC counts

11

Version “ Date [raw LOC [SLOC ‘
2.2.0 || 2005-11-30 788634 | 222029
2.2.2 2006-04-22 779381 222631
2.2.3 || 2006-07-27 TTT6T6 | 222728
2.2.4 || 2007-01-06 782621 | 223688
2.2.6 || 2007-09-06 789395 | 225438
2.2.8 || 2008-01-17 800087 | 227133
2.2.9 || 2008-06-13 821917 | 238769
2.2.10 2008-10-14 836881 240374
2.2.11 2008-12-13 843579 | 240557
2.2.12 2009-07-27 852451 246981
2.2.13 || 2009-08-06 853515 | 241716
2.2.14 || 2009-09-23 817829 | 242365

Table 5: Apache 2.2 (S)LOC counts

Version “ Date [raw LOC [SLOC

1.0 2004-11-09 5712472 | 2482532
1.5 || 2005-11-29 5980193 | 2677615
2.0 || 2006-10-24 6218536 | 2767806
3.0 || 2008-06-17 6390796 | 2516373
3.5 || 2009-06-29 7239320 | 2624988

Table 6: Firefox (S)LOC counts

12

